期刊文献+

带不对称裂纹的圆形孔口的反平面剪切问题的解析解 被引量:1

Analytic Solutions of the Anti-plane Problems about a Circular Hole with Asymmetry Cracks
下载PDF
导出
摘要 利用复变函数方法,通过构造保角映射,研究了带不对称裂纹的圆形孔口的反平面剪切问题,给出了Ⅲ型裂纹问题的应力强度因子.在极限情形下,不仅可以还原为已有的结果,而且求得带对称双裂纹的圆形孔口问题、带单裂纹的圆形孔口问题在裂纹尖端处的Ⅲ型应力强度因子. By means of the complex variable function method and using the technique of conforreal mapping, the anti-plane shear problem about a circular hole with asymmetry cracks is investigated and the solution of the stress intensity factor (SIFs) of mode Ⅲ is found out. Under the condition of limitation, not only the known result can be obtained but also the solutions of the mode SIFs at the crack tip to a circular hole with two straight cracks and a circular hole with a straight crack are found out.
作者 云文在
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期186-190,共5页 Journal of Inner Mongolia University:Natural Science Edition
关键词 保角变换 带不对称双裂纹的椭圆孔口 反平面剪切 复变函数方法 应力强度因子 conformal mapping circular hole with asymmetry cracks anti-plane problem the complex variable function method SIF
  • 相关文献

参考文献5

二级参考文献107

  • 1闫相桥.平面弹性介质多孔多裂纹问题的一种数值方法[J].力学学报,2004,36(5):604-610. 被引量:4
  • 2陈宜周,李福林,林筱云.圆弧形裂纹问题中的应力对数奇异性[J].力学学报,2006,38(2):251-254. 被引量:2
  • 3皮建东,刘官厅,郭怀民.一维六方准晶狭长体中共线裂纹问题的精确解[J].内蒙古师范大学学报(自然科学汉文版),2006,35(4):391-396. 被引量:23
  • 4Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951.
  • 5Wang R H, Hu C Z and Gui J N 2004 Quasi-crystal Physics (Beijing: Science Press) (in Chinese).
  • 6De P and Pelcovits R A 1987 Phys. Rev. B 35 8609.
  • 7Liu G T 2005 The Complex Variable Function Method of Quasi-crystals Elasticity and Analytic Solutions of Nonlinear Equations (Huhhot, China: Inner Mongolia People Press) (in Chinese).
  • 8Dong C 1998 The Quasi-crystal Material (Beijing: National Defence Industry Press) (in Chinese).
  • 9Ding D H, Wang R H, Yang W G and Hu C Z 1995 J. Phys: Condens. Matter 7 5423.
  • 10Ding D H, Yang W G, Hu C Z and Wang R H 1993 Phys. Rev. B 48 7003.

共引文献112

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部