摘要
考虑半参数回归模型yi=xiβ+g(ti)+Vi(1≤i≤n), 其中(xi,ti)是已知的设计点, 斜率参数β是未知的, g(·)是未知函数, 误差Vi=sum from j=-∞ to ∞(cjei-j),sum from j=-∞ to ∞(|cj|<∞)并且ei是负相关的随机变量. 在适当的条件下, 我们研究了β与g(·)小波估计量的强收敛速度. 结果显示g(·)的小波估计量达到最优收敛速度. 同时, 对β小波估计量也作了模拟研究.
Consider semiparametric regression model yi=xiβ+g(ti)+Vi(1≤i≤n), where the known design points (xi,ti), the unknown slope parameter β, and the nonparametric component g are non-random, and the correlated errors Vi=^∞∑j=-∞ cjei-j with ^∞∑j=-∞|cj|〈∞)and ei are negatively associated random variables. Under appropriate conditions, we study rates of strong convergence for wavelet estimators of β and g(·). The results show that the wavelet estimator of g(·) can attain the optimal convergence rate. Finite sample behavior of the estimator of β is investigated via simulations too.
出处
《应用概率统计》
CSCD
北大核心
2010年第1期35-46,共12页
Chinese Journal of Applied Probability and Statistics
基金
supported by the National Natural Science Foundation of China(10871146)
关键词
半参数回归模型
负相关
小波估计量
收敛速度
Semiparametric regression model, negatively associated, wavelet estimator, convergence rate.