期刊文献+

多神经网络组合模型在入侵检测中的应用 被引量:1

Intrusion Detection Technique Based on a Combination Model of Multi Neural Networks
下载PDF
导出
摘要 入侵检测技术作为提高网络安全的有效手段日益受到重视,利用多神经网络组合模型解决入侵检测问题,针对入侵检测研究的通用审计数据集,首先将其所有字符串行式的元素转换为数值形式;其次为了提高神经网络的逼近性能和运算速度,去除对输出无影响的输入项,并且将剩余输入项的可能取值转换到合理的范围内;最后在MATLAB平台下进行仿真实验,并与单层BP网络进行比较.仿真结果表明,多神经网络组合模型在入侵检测中体现出良好的特性. Intrusion detection technique is an important way to improve network security, and is a main research topic in computer field. In this paper, the benchmark dataset commonly used in the research of intrusion detection is adopted. Firstly, the string type of data is changed into the numeric type ; secondly the unnecessary data is omitted and the value of data is limited in reasonable ranges, which can improve the performance of the network ; finally a lot of simulation results on a combination model of RBF and BP networks are gained from Matlab platform, and comparison results display that multi neUral network is better than BP network for intrusion detection.
出处 《北京建筑工程学院学报》 2010年第1期41-44,共4页 Journal of Beijing Institute of Civil Engineering and Architecture
基金 北京市教委科技计划面上项目(09KM08)
关键词 多神经网络组合模型 入侵检测 网络安全 RBF network intrusion detection network security
  • 相关文献

参考文献7

  • 1Ye N, Li XY, Chen Q, et al. Probabilistic techniques for intrusion detection based on computer audit data [ J ]. IEEE Transaction on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2001, 31 (4): 266-274.
  • 2凌军,曹阳,尹建华,卢勇,黄天锡.一种实时入侵检测专家系统的设计与实现[J].计算机工程与应用,2002,38(9):9-10. 被引量:5
  • 3危胜军,胡昌振,高秀峰.基于学习Petri网的网络入侵检测方法[J].兵工学报,2006,27(2):269-272. 被引量:5
  • 4王春枝,金伟健.基于危险理论与数理统计的入侵检测模型[J].计算机工程与应用,2008,44(11):136-138. 被引量:8
  • 5Morteza A, Rasool J, Hamid R. SRT-UNNID: a practical solution to real-time network-based intrusion detection using unsupervised neural networks [ J]. Computers and Security, 2006, 25 (6) : 459 - 468.
  • 6Tadeusz P, Axel T. Data mining and machine learningtowards reducing false positives in intrusion detection [ J ]. Information Security Technical Report, 2005, 10 ( 3 ) : 169 - 183.
  • 7corrected. gz[DB/OL], http: //kdd. ics. uci. edu/databases/kddcup99/kddcup99.html.

二级参考文献11

  • 1宋程,李涛,陈桓,许春.基于人工免疫原理的未知病毒检测方法[J].计算机工程与设计,2005,26(3):583-585. 被引量:11
  • 2高海华,杨辉华,王行愚.基于BPSO-SVM的网络入侵特征选择和检测[J].计算机工程,2006,32(8):37-39. 被引量:20
  • 3谷雨,赵佳枢,张天军,徐宗本.基于免疫多样性的分布式入侵检测算法[J].西安交通大学学报,2006,40(10):1052-1055. 被引量:6
  • 4Forrest S,Hotimeyr S A,Somayaji,et al.A sense of self for unix processes[C]//Proceeding of the 2003 IEEE Symposium on Security and Privacy, 2003 : 120-128.
  • 5Bamasak O,Zhang N.A distributed reputation management scheme for mobile agent-based E-Commerce applications[C]//Proceedings of the 2005 IEEE International Conference on E-Technology,E- Commerce and E-Service,2005:270-275.
  • 6Helman P,Liepins G,Richards W.Foundations of Intrusion Detection[C].In:Proceedings of the Fifth Computer Security Foundations Workshop, 1992:114~120
  • 7Anderson D,Frivold T,Valdes A.Next-generation Intrusion DetectionExpert System(NIDES):A Summary[R].SRI International Technical Report SRI-CSL-95-07,1995
  • 8U Lindqvist,P A Porras. Detecting computer and network misuse throughthe production-based expert system toolset(P-BEST)[C].In:Proceedings of the 1999 IEEE Symposium on Security and Privacy ,Oakland,1999:146~161
  • 9JosephGiarratano GaryRiley.专家系统原理与编程[M].北京:机械工业出版社,2000.1~3.
  • 10周奕,吴时霖.NNF and NNPrF—Fuzzy Petri Nets Based on Neural Network for Knowledge Representation, Reasoning and Learning[J].Journal of Computer Science & Technology,1996,11(2):133-149. 被引量:1

共引文献13

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部