期刊文献+

Baer-环构成条件的反例探讨

The Counterexample of Constistic Condition for Baer Rings
下载PDF
导出
摘要 研究了Baer-环的若干性质和构成条件.在文献[1]给出素PI-环S=Mat2(Z2[x])的子环R是素PI-环但不是Baer-环这一反例的基础上,进一步证明了对任意素数p,R是素PI-环,但不是Baer-环,从而扩展了文献[1]给出的反例的条件. We study several properties of Baer ring and the conditions for which ring may be Baer. Due to [1], the subring R of prime PI ring S=Mat2(Z2[x]) is prime PI ring, but it can not be Baer. Furthermore, under this counterexample, we prove that R is prime PI ring, but it is not Baer for any prime p. Accordingly, we extend the class of counterexample of Baer rings.
作者 金海兰 李婧
出处 《延边大学学报(自然科学版)》 CAS 2010年第1期16-20,共5页 Journal of Yanbian University(Natural Science Edition)
关键词 素PI-环 直和项 Baer-环 Noetherian-环 Goldie-环 prime PI ring direct summand Baer ring Noetherian ring Goldie ring
  • 相关文献

参考文献5

  • 1Lee Y, Kim N K, Hong C Y. Counterexamples on Baer Rings[J]. Comm Algebra, 1997,25 (2) : 497- 507.
  • 2Hungerford T W. Algebra[M]. New York: Springer- Verlag, 1980.
  • 3Armendariz E P. A Note on Extension of Baer and P.P.-rings[J]. J Austral Math Soc, 1974,18:470- 473.
  • 4Belluce L P, Jain S K. Prime Ring Having One-sided Ideal Satisfying a Polynomial Identity[J].Pacific J Math, 1968,24:421-424.
  • 5Posner E C. Prime Rings Satisfying a Polynomial Identity[J]. Proc Amer Math Soc, 1960,11:43-60.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部