摘要
研究了Baer-环的若干性质和构成条件.在文献[1]给出素PI-环S=Mat2(Z2[x])的子环R是素PI-环但不是Baer-环这一反例的基础上,进一步证明了对任意素数p,R是素PI-环,但不是Baer-环,从而扩展了文献[1]给出的反例的条件.
We study several properties of Baer ring and the conditions for which ring may be Baer. Due to [1], the subring R of prime PI ring S=Mat2(Z2[x]) is prime PI ring, but it can not be Baer. Furthermore, under this counterexample, we prove that R is prime PI ring, but it is not Baer for any prime p. Accordingly, we extend the class of counterexample of Baer rings.
出处
《延边大学学报(自然科学版)》
CAS
2010年第1期16-20,共5页
Journal of Yanbian University(Natural Science Edition)