期刊文献+

基于DSP的疲劳驾驶实时检测算法实现

Implementation of the Real-time Driver fatigue Detection Algorithm based on DSP
下载PDF
导出
摘要 针对基于DSP的疲劳驾驶实时检测系统,利用Adaboost算法训练人脸与人眼分类器,在分析了基于Hough找圆法与灰度投影法的人眼状态分析算法各自的优缺点后,提出了一种新的基于区域灰度特征的人眼状态分析算法,该算法不需要精确几何模型,利用基于区域特征的灰度均值,具有很强的鲁棒性。将疲劳驾驶检测算法移植到DSP中后,检测算法的帧速率达到18帧/秒,满足了实时检测的性能要求。 In terms of the real - time driver fatigue detection system based on DSP, the paper proposes a new human eye state analysis algorithm based on the regional gray feature after analyzing the advantages and disadvantages of the human eye state analysis algorithm based on the Hough transform method for circle finding or the Gray scale projection method by using the classifier of human face and eye training with the Adaboost algorithm. The new algorithm does not need an accurate geometric module and it has highly robustness by using the gray scale based on statistical average. When the DSP is used in the driver fatigue detection algorithm, the frame rate of the detection algorithm reaches to 18 frames/see. The algorithm can meet the needs of real - time detection.
出处 《成都电子机械高等专科学校学报》 2010年第1期20-24,共5页 Journal of Chengdu Electromechanical College
关键词 DSP ADABOOST 疲劳驾驶 实时检测 DSP Adaboost Driver fatigue Real - time detection
  • 相关文献

参考文献6

二级参考文献18

  • 1刘兵,司秉玉.基于图像区域搜索法的彩色球目标识别与跟踪[J].仪器仪表学报,2003,24(z1):225-226. 被引量:40
  • 2公安部..交通事故统计[EB/OL]..http://www.safety.com.cn/jiaotong/jt05.asp number=jt051d,,2004-08-16/2005-04-02..
  • 3David F, Richard D. PERCLOS: A valid psychophysiological measure of alertness as assessed by psychomotor vigilance[EB/OL]. http://www.fmcsa.dot.gov,2005-04-02.
  • 4Yuille A, Hallinan P, Cohen D. Feature Extraction from Faces Using Deformable Templates [J]. Computer Vision, 1992, 8(2):99-111.
  • 5M.Bichsel,editor.International Workshop on Automatic Face and Gesture Recognition[C],Zurich,Switzerland.IEEE Computer Society,Swiss Information Society et,al,Multimedia Laboratory,Department of Computer Science,University of Zurich.June 26-28 1995.1-30.
  • 6KSobottka and IPitas. Face localization and facial feature extraction based on shape and color information[C]. In Int. Conf. on Image Processing(ICPR), Lausanne, Switzerland, Eeptember 1996.134-138.
  • 7Dieckmann U. Plankensteiner P. Scham burger. A biometric person identification system using sensor fusion[C]. In: Proceedings of First International Conference of Audio and Video-Based Biometric Person Authentication, Crans-Montana, Switzerland, March 1997. 301-323.
  • 8Karin Sobottka, Ioannis Pitas. A fully automatic approach to facial feature detection and tracking[C]. In: AVBPA'97 Department of Informatics, University of Thessalon iki, Greece, 1997. 77-84.
  • 9Yu B ,Yuan B Z.A more Efficient Branch and Bound Algorithm for Feature Selection[J].Pattern Recognition, 1993;26(6) :883~889
  • 10靳中鑫.数字图像信息处理[M].北京:国防工业出版社,2003.55-60.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部