期刊文献+

基于PSO的丁二酸发酵动力学模型参数优化 被引量:1

Parameter Optimization of the Kinetic Model for the Succinic Acid Fermentation Based on Particle Swarm Optimization
下载PDF
导出
摘要 丁二酸是一种重要的化工原料,对丁二酸发酵过程进行模型化研究可以为工艺放大提供必要的基础数据。根据丁二酸发酵过程的实验数据,在已有的丁二酸发酵动力学模型的基础上,采用粒子群优化算法进行模型参数优化研究,求得最优参数并利用其进行过程仿真。结果表明优化后的模型能够更好地模拟丁二酸分批发酵过程。和采用遗传算法进行的研究结果相比,粒子群算法提高了模型计算值与实验测量值的拟合程度,且算法简单,易于实现。 Succinic acid is an important chemical material. Building the model for the fermentation process of succinic acid can provide basic data for the industrialization of the fermentation technology. Particle swarm optimization (PS0) method was used to optimize the parameter of the kinetic model for the succinic acid fermentation based on the experimental data, the optimal parameters was found and the simulation of the process was made. The result shows that the model can simulate the process of succinic acid fermentation better. Comparing with GA method, the model which optimized by PSO improves the coincidence of calculated data and experimental data, and PSO method is simple and easy to realize.
出处 《化工自动化及仪表》 CAS 北大核心 2010年第3期10-13,共4页 Control and Instruments in Chemical Industry
基金 国家自然科学基金资助项目(20606017)
关键词 丁二酸发酵 动力学模型 参数优化 粒子群算法 succinic acid fermentation kinetic model parameter optimization particle swarm optimization
  • 相关文献

参考文献10

  • 1Mc KINLAY J B, VICILLE C, ZEIKUS J G. Prospects for a Bio- based Succinate Industry [ J ]. Appl Microbiol Biotechnol,2007, 76:727 - 740.
  • 2王庆昭,吴巍,赵学明.生物转化法制取琥珀酸及其衍生物的前景分析[J].化工进展,2004,23(7):794-798. 被引量:43
  • 3SONGA H, LEE S Y. Production of Succinic Acid by Bacterial Fermentation [ J ]. Enzyme and Microbial Technology,2006,39 : 352 - 361.
  • 4LEE P C, LEE W G, KWON S, et al. Batch and Continuous Cultivation of Anaerobiospirillum Succiniciproducens for the Production of Succinic Acid from Whey [ J ]. Appl Microbiol Biotechnol,2000,54 : 23 - 27.
  • 5VEMURI G N, EITEMAN M A, ALTMAN E. Succinate Production in Dual-phase Escherichia Coli Fermentations Depends on the Time of Transition from Aerobic to Anaerobic Conditions [ J ]. Journal of Industrial Microbiology and Biotechnology, 2002,28:325 - 332.
  • 6姜岷,蔡婷,陈可泉,苏溧,谢鑫.一株丁二酸高产菌株的筛选和鉴定[J].工业微生物,2008,38(3):38-42. 被引量:10
  • 7苏溧.生物法合成丁二酸过程优化与动力学模型的建立[D].南京:南京工业大学,2007.
  • 8毛磊.基于遗传算法的丁二酸发酵动力学模型优化[D].南京工业大学,2009.
  • 9李炜,石连生,梁成龙.基于PSO-LSSVM的研究法辛烷值预测建模[J].化工自动化及仪表,2008,35(2):25-27. 被引量:15
  • 10熊伟丽,徐保国,吴晓鹏.改进粒子群算法在酶发酵过程优化控制中的应用[J].化工自动化及仪表,2007,34(2):7-9. 被引量:3

二级参考文献35

共引文献67

同被引文献11

  • 1朱晓蒙,柏荣,张浩,朱中南.用绝热反应器研究乙苯脱氢的宏观动力学[J].华东理工大学学报(自然科学版),1994,20(2):153-158. 被引量:16
  • 2蒋浩,唐欢容,郑金华.一种基于快速排序的快速多目标遗传算法[J].计算机工程与应用,2005,41(30):46-48. 被引量:8
  • 3Clough D E, Ramirez W F. Mathematical Modeling and Optimization of the Dehydrogenation of Ethyl Benzene to Form Styrene [ J ]. American Institute of Chemical Engineering, 1976,22 ( 6 ) : 1097 N 1105.
  • 4Amy K Y Y, Ray A K, Rangaiah G P. Multi-objective Optimization of an Industrial Styrene Reactor[ J ]. Com- puters and Chemical Engineering,2003,27 (1):111 - 130.
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization [ C ]. Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995:1942 - 1948.
  • 6Coello Coello C A, Lechuga M S. A Proposal for Mul- tiple Objective Particle Swarm Optimization [ C ]. Pro- ceedings of the 2002 Congress on Evolutionary Com- putation. Honolulu, HI , USA: CEC,2002:1051 - 1056.
  • 7Huang V L, Suganthan P N, Liang J J. Comprehen- sive Learning Particle Swarm Optimizer for Solving Multi-objective Optimization Problems [ J ]. Interna- tional Journal of Intelligent System, 2006,21 ( 16 ) : 209 - 226.
  • 8Laumanns M, Thiele L, Deb K. Combining Conver- gence and Diversity in Evolutionary Multi-objective Optimization [ J ]. Evolutionary Computation, 2002,10 (21) :263 -282.
  • 9徐志刚,朱子彬,张成芳,顾雄毅,朱中南.乙苯脱氢径向反应器的模拟和操作优化[J].华东理工大学学报(自然科学版),1999,25(3):217-220. 被引量:7
  • 10张彬,杨为民,钱锋,吴智勇,何文军,张卫东.乙苯催化脱氢制苯乙烯生产过程的机理建模及优化[J].控制理论与应用,2010,27(7):903-908. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部