期刊文献+

机械合金化Fe-Cr-W-Ti-Y-(O)粉末特性 被引量:1

Characteristics of Fe—Cr—W—Ti—Y—(O) powders produced by mechanical alloying
原文传递
导出
摘要 通过机械合金化制备了Fe-Cr-W-Ti-Y-(O)合金粉末,研究了球磨时间和球磨介质硬脂酸添加量对粉末特性的影响.结果表明:随着球磨时间的延长,元素粉末的合金化程度、加工硬化效应及氧元素含量提高,晶粒尺寸减小;球磨48h后,W和Cr原子已完全固溶于α-Fe中,合金粉末晶粒尺寸减小至14.0nm,显微硬度(HV)为613.4,氧含量(质量分数)达到0.935%;加入一定量的硬脂酸可以有效地阻碍粉末颗粒的团聚并优化粉末的颗粒形貌和粒度分布,但会延缓粉末合金化进程. Fe—Cr—W—Ti—Y—(O) powders were fabricated by mechanical alloying (MA) in this work.The effect of milling time and stearic acid (SA) content on characteristics of the milled powders were studied by X-ray diffraction(XRD),scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy,etc.The results show that with the increasing of milling time,the alloying degree,microhardness and oxygen content of the milled powders increase,while the average grain size of powders decrease.After 48 h milling,W and Cr have dissolved in α-Fe completely,the average grain size of powders have been reduced to 14.0 nm,the microhardness (HV) is 613.4,and the oxygen content is 0.935%.The presence of SA could efficiently hinder agglomerations,optimize morphology and particle size distribution of powders,but retard diffusion between elements.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期20-24,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重点资助项目(50634060)
关键词 机械合金化 合金粉末 Fe—Cr—W—Ti—Y—(O) 球磨时间 硬脂酸 晶粒尺寸 mechanical alloying powders Fe-Cr-W-Ti-Y-(O) milling time stearic acid grain size
  • 相关文献

参考文献11

  • 1Benjamin. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions: A, 1970, 10(1): 2 943-2 951.
  • 2Weeb W, Barkker H. Amorphization by ball milling: a review[J]. Physical: B, 1988, 153(1-3):93-135.
  • 3Eekert J, Sehultz L, Urban K. Formation of quasicrystaline and amorphous phase in mechanical alloyed Al-based and Ti Ni based alloys[J]. Acta Metallurgica Materialia, 1991, 39(7): 1 497-1 506.
  • 4Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structures[J]. Journal of Applied Physics, 1988, 64 (10):6 044-6 049.
  • 5曹玲飞,汪明朴,谢丹,郭明星,李周,谭望,徐根应.Thermal behavior and structure of Fe_(84)Nb_7B_9 nanocrystalline powders[J].中国有色金属学会会刊:英文版,2006,16(2):299-303. 被引量:1
  • 6肖柱,李周,方梅,罗明,龚深,唐宁.Structure evolution of Cu-based shape memory powder during mechanical alloying[J].中国有色金属学会会刊:英文版,2007,17(6):1422-1427. 被引量:2
  • 7Wang H, Ouyang L Z, Zeng M Q, et al. Direct Synthesis of MgCNi3 by mechanical alloying[J]. Scripta Materialia, 2004, 50(12): 1 471-1 474.
  • 8Ukai S, Harada M, Okada H, et al. Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel[J]. Journal of Nuclear Materials, 1993, 204(2):74-80.
  • 9Kimura A, Sugano R, Matsushita Y, et al. Thermal helium desorption behavior in advanced ferritic steels [J]. Journal of Physics and Chemistry of Solids, 2005, 66(2-4): 50:1-508.
  • 10Ukai S, Ohtsuka S. Low cycle fatigue properties of ODS ferritic-martensitic steels at high temperature [J]. Journal of Nuclear Materials, 2007, 367-370 (1) : 234-238.

二级参考文献16

  • 1MENG Jie, JIA Cheng-chang, HE Qing. Fabrication of oxide-reinforced Ni3Al composites by mechanical alloying and spark plasma sintering [J]. Materials Science and Engineering A, 2006, 434( 1/2): 246-249.
  • 2LOPEZ M, CORREDOR D, CAMURRI C, VERGARA V, JIMENEZ J. Performance and characterization of dispersion strengthened Cu-TiB2 composite for electrical use [J]. Materials Characterization, 2005, 55(4/5): 252-262.
  • 3HU Chia-jung, WU Hsin-ming. Formation of Cu-Zr-Ti amorphous powders with B and Si additions by mechanical alloying technique [J]. Journal of Alloys and Compounds, 2007, 434/435: 390-393.
  • 4CHENG Xiao-yin, OUYANG Yi-fang, SHI Hong-wei, ZHONG Xia-ping, DU Yong, TAO Xiao-ming. Nano-amorphous (FeAl)1-xZrx alloys prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 2006, 421( 1/2): 314-318.
  • 5BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying [J]. Met Trans, 1970, 10(1): 2943-2951.
  • 6KANNARPADY GANESH K, BHATTACHARYYA A. Effect of mechanical and thermal cycling on shape memory properties of high temperature Cu-Al-Ni single crystals [J]. American Society of Mechanical Engineers. Aerospace Division (Publication) AD, 2004, 69:281-285.
  • 7RECARTE V, PEREZ-LANDAZABAL J I. IBARRA A. High temperature β phase decomposition process in a Cu-Al-Ni shape memory alloy [J]. Materials Science and Engineering A, 2004, 378(1/2): 238-242.
  • 8MIYAzAKI S, OTSUKA K, SAKAMOTO H, SHIMIZU K. Fracture of Cu-Al-Ni shape memory alloy [J]. Transactions of the Japan Institute of Metals, 1981, 22(4): 244-252.
  • 9MIYAZAKI S, OTSUKA K. Development of shape memory alloys [J]. ISIJ International, 1989, 29:353-377.
  • 10RODRIGUEZ P P, PEREZ-SAEZ R B, PEREZ-LANDAZABAL J I, RECARTE V, RUANO O A. NO M L, SAN JUAN J. Martensitic transformation in Cu-Al-Ni shape memory alloys obtained by ball milling [J]. Journal De Physique IV: JP, 2003, 1121: 575-578.

共引文献1

同被引文献9

  • 1UKAI S, HARADA M, OKADA H,et al. Tube manufactu- ring and mechanical properties of oxide dispersion strengthened ferritic steel[J]. Journal of Nuclear Materials, 1993,204 : 74- 80.
  • 2UKAI S, HARADA M, OKADA H,et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials[J]. Journal of Nuclear Materials, 1993,204: 65- 73.
  • 3UKAI S, FUJIWARA M. Perspective of ODS alloys applica- tion in nuclear enviorments[J]. Journal of Nuclear Materials, 2002,307/311(1) :749-751.
  • 4UKAI S, OHTSUKA S. Low cycle fatigue properties of ODS ferritic-martensitic steels at high temperature[J]. Journal of Nuclear Materials, 2007,367/370(1) : 234-238.
  • 5KIM I S, HUNN J D, HASHIMOTO N. Defect and void e- volution in oxide dispersion strengthened ferritic steels under 3. 2 MeV Fe^+ ion irradiation with simultaneous helium injec- tion[J]. Journal of Nuclear Materials,2000,280(3):264-274.
  • 6KIMURA A, SUGANO R, MATSUSHITA Y, et al. Ther- mal helium desorption behavior in advanced ferritic steels[J]. Journal of Physics and Chemistry of Solids, 2005, 66 (2/4): 504-508.
  • 7KLEUEH R L, HARRIES D R. High-chromium ferritic and martensitic steels for nuclear application [M]. American: ASTM International, 2001.
  • 8LEE J H, KASADA R, CHO H S, et al. Irradiation-induced hardening and embrittlement of high-Cr ODS ferritic steels[J]. Journal of ASTM International, 2009,6(8):164-175.
  • 9OLIER P, OKSIUTA Z, MELAT J F,et al. Microstructure and cold workability assessment of a new ODS ferritic steel [J]. Advanced Materials Research, 2009,59 :312-318.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部