期刊文献+

改进的不均衡样本集支持向量机预处理方法 被引量:2

Improvement on preprocessing algorithm of support vector machines for unbalance data set
下载PDF
导出
摘要 将一种改进的邻域算法应用于不均衡样本集中,由于改进的邻域算法未考虑不均衡样本集的问题从而导致后续的支持向量机训练耗费和泛化性能受影响,把后验概率的思想加入改进的邻域算法中,并由实验数据说明了该方法对不均衡样本集的有效性。 An improved neighborhood algorithm is applied in unbalance data set.Because of not considering unbalance date set, the generalization of improved neighborhood algorithm is degrade.In order to solve this problem,the idea of posterior probability is used in the new neighborhood algorithm and the result of pattern classification shows the effectiveness of the method.
作者 何渊淘 邓伟
出处 《计算机工程与应用》 CSCD 北大核心 2010年第10期36-37,40,共3页 Computer Engineering and Applications
关键词 支持向量机(SVM) 邻域算法 后验概率 VC维 Support Vector Machine(SVM) neighborhood algorithm posterior probability VC dimension
  • 相关文献

参考文献9

  • 1Vapnik V.Statistical learning theory[M].New York,NY:John Wiley, 1998.
  • 2Vapnik V.The nature of statistical learning theory[M].New York, Springer-Verlag, 2000.
  • 3Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998.
  • 4Platt J C.Fast training of support vector machines using sequential minimal optimization[C]//Schokopf B,Burges C J C,Smola A J.Advances in Kernel Methods:Support Vector Machines.Cambridge,MA: MIT Press, 1999.
  • 5Almeida M B,Braga A,Braga J P.SVM-KM:Speeding SVMs learning with a priori cluster selection and k-means[C]//Proc of the 6th Brazilian Symposium on Neural Networks.Washington D C: IEEE Computer Society,2000.
  • 6Shin H J,Cho S Z.Neighborhood property-based pattern selection for support vector machines[J].Neural Computation,2007.
  • 7Grother P J,Candela G T,Blue J L.Fast implementations of nearest neighbor classifiers[J].Pattem Recognition, 1997.
  • 8Hart P E.The condensed nearest neighbor rule[J].IEEE Transactions on Information Theory, 1968.
  • 9Shin H J,Cho S.How many neighbors to consider in pattern preselection for support vector classifiers?[C]//Proc of the International Joint Conference on Neural Networks.Washington D C:IEEE Computer Society,2003.

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部