期刊文献+

高光谱数据分类新方法研究

Research on new classification method for hyperspectral data
下载PDF
导出
摘要 传统的独立分量分析(ICA)算法无法确定高光谱数据中独立分量的个数,利用概率神经网络(PNN)训练时间短的优点,根据分类精度可以较快地确定出独立分量的个数。提出了一种在确定高光谱数据的维数之后利用支持向量机(SVM)分类的新算法思想,首先利用ICA对高光谱数据降维,并利用PNN确定出独立分量的个数,而后对降维后的数据利用SVM作交叉验证,并采用混合核函数进行分类的算法思想。通过仿真实验表明,该算法可以在保证分类精度的同时大大减少分类的时间。 The traditional Independent Component Analysis(ICA) method can't determine the number of Independent Components (ICs) in hyperspectral data,but it can quickly determine the number of ICs by using the advantage of short training time in Probability Neural Network(PNN).A combined method of ICA,PNN and Support Vector Maehine(SVM) is proposed for hyperspeetral data classification.Use ICA to do dimensionality reduction for hyperspectral dada at first,and then use PNN to determine the number of ICs,at last use SVM with mixture kernels to do classification for the dimensionality reduction data.By the experiments,this method can insure the classification accuracy while reducing the time of classification.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第10期153-156,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60772133~~
关键词 独立分量分析 支持向量机 高光谱 概率神经网络 混合核函数 independent component analysis support vector machine hyperspectral probability neural network mixture kernels
  • 相关文献

参考文献11

  • 1Wang J,Chang C I.Dimensionality reduction by independent component analysis for hyperspectral image analysis[C]//IEEE Int Geosci Remote Sens Symp,Seoul,Korea,Jul 2005.
  • 2骆剑承,周成虎,梁怡,马江洪.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55. 被引量:109
  • 3Chalimourda A,Scholkopf B,Smola A.Experimentally optimal v in support vector regression for different noise models and parameter settings[J].Neural Networks, 2004,17 : 127-141.
  • 4董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 5Platt J C.Fast training of support vector machines using sequential minimal optimization[M]//Scholkopf B, Burges C,Smola A.Advances in Kernel Methods : Support Vector Machines.Cambridge, MA : MIT Press, 1999.
  • 6Hyvarinen A,Oja E.A fast fixed-point for independent component analysis[J].Neural Computation, 1997,9(7): 1483-1492.
  • 7Specht D F.Probabilistic neural networks[J].Neural Networks,1990,3 (1):109-118.
  • 8边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 9Hsu C W,Lin C J.A comparison of method for multiclass support vetor machines[J].IEEE Trans Neural Networks,2002,13:415-425.
  • 10Smits G F,Jordaan E M.Improving SVM regression using mixtures of kemels[C]//IEEE Proceedings of the 2002 International Joint Conference on Neural Networks,2002,3:2785-2790.

二级参考文献6

  • 1Vapnik Vladimir N. The Nature of Statistical Learning Theory [M]. Springer-Verlag, New York, Inc, 2000.
  • 2Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition[M]. Kluwer Academic Publishers, Boston, 1999.
  • 3Joachime T. Estimating the Generalization Performance of a SVM Efficiently[M]. Informatik LSV Ⅲ, University Dortmund, 2001.
  • 4董春曦 饶鲜 杨绍全.支持向量机推广能力估计方法综述[A].第一届全国人工智能基础学术会议,2002..
  • 5Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules[J]. Enginering Cybernetics, 1967,3:98-109.
  • 6Murphy P M, Aha Irvine D W. CA: University of California,Department of Information and Computer Science [ EB/OL ].http://www. ics. uci. edu/~ mlearn/MLRepository. html, 1994.

共引文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部