期刊文献+

一种新的预测用户浏览模式的度量方法 被引量:2

New measuring method to predict users' browsing patterns
下载PDF
导出
摘要 在Web环境中,度量用户的浏览模式对Web站点结构的改进是有益的。挖掘和度量Web日志能够识别用户的访问模式模型,Web站点管理者能够应用这些模型研究用户的访问偏爱度,由此改进站点的体系结构以及分析这些改进带来的影响。因此,提出用户群偏爱度这样一个新概念,并使用了基于用户群的模糊聚类算法(UGFC),然后根据聚类结果,即具有相似访问习惯的用户群体,度量用户群偏爱度,再基于用户群偏爱度,利用混合阶Markov模型(HOMM)进行预测。实验表明,这种新的度量预测方法(UGFC-HOMM)比传统Markov模型(TMM)预测更准确,并且实验用精确率、覆盖率和运行时间这3个度量评价值对预测性能进行评估。 In the Web environment, measuring users' browsing patterns can benefit the improvement of framework of Web sites. Mining and measuring Web logs are able to identify users' navigation patterns models,Web-masters can apply these models for studying users' access favoritism to improve site organization and analyze the effects of changes to their Web sites.So,in this pa per,a new conception of user group favoritism is proposed,and Fuzzy Clustering algorithm based on User Group(UGFC) is used, and then, according to clustering result--user group having similar access habit,user group favoritism is measured ,based on which the Hybrid-Order Markov Model(HOMM) is used to predict.This new prediction metrics approach(UGFC-HOMM) shows that it is superior to Traditional Markov Model(TMM) in users' access prediction.Three evaluation metrics are applied to evaluate performance of prediction,namely,precision,coverage and runtime.
作者 陈佳 吴军华
出处 《计算机工程与应用》 CSCD 北大核心 2010年第10期209-212,共4页 Computer Engineering and Applications
关键词 WEB日志 用户群偏爱度 模糊聚类算法 混合阶Markov模型 预测 Web logs user group favoritism fuzzy clustering algorithm hybrid-order Markov model prediction
  • 相关文献

参考文献15

  • 1Xiao Yong-qian,Dunham M H.Efficient mining of traversal patterns[J].Data & Knowledge Engineering,2001,39(2): 191-214.
  • 2Xing Dong-shan,Shen Jun-yi.Efficient data mining for Web navigation patterns[J].Information and Software Technology,2004,46(1):55-63.
  • 3Kuo R J,Liao J L,Tu C.Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce[J].Decision Support Systems,2005,40(2): 355-374.
  • 4Chang H J,Huang L P,Ho C L.An anticipation model of potential customers' purchasing behavior based on clustering analysis and association rules analysis[J].Expert System with Applications,2007,32 (3):753-764.
  • 5Mobasher B,Dai H,Luo T,et al.Discovery and evaluation of aggregate usage profiles for Web personalization[J].Data Mining and Knowledge Discovery,2002,6( 1 ) : 61-82.
  • 6Dong Yi-hong,Zhuang Yu-ting,Chen Ken,et al.A hierarchical clustering algorithm based on fuzzy graph connectedness[J].Fuzzy Sets and Systems,2006,157(13) : 1760-1774.
  • 7Tug E, Sakiroglu M,Arslan A.Automatic discovery of the sequential accesses from Web log data flies via a genetic algorithm[J].Knowledge-Based System,2006,19(3): 180-186.
  • 8Lee Y S,Yen S J.Incremental and interactive mining of Web traversal patterns[J].Information Sciences,2008,178(2) :287-306.
  • 9Wang Xiao-zhe,Abraham A,Smith K A.Intelligent Web traffic mining and analysis[J].Journal of Network and Computer Applications, 2005,28 (2): 147-165.
  • 10Nanopoulos A,Manolopoulos Y.Mining patterns from graph traversals[J].Data & Knowledge Engineering, 2001,37(3 ) : 243-266.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部