期刊文献+

三角代数的全可导点

All-derivable Points of Triangular Algebras
下载PDF
导出
摘要 设u=Tri(A,M,B)为三角代数.如果每一个在点G可导的线性映射是个导子,则称点G是U的全可导点.本文证明了P1=(1A 0 0),P2=(0 0 1B)是三角代数u的全可导点. Let U = Tri(A, M, B) be a triangular algebra. We call that an element G is an all - derivable point of U if every derivable linear mapping Ф at G is a derivation. In this paper, it is proved that P1 =(0 1A 0) and P2=(1R 0 0) are all - derivable points of triangular algebra.
作者 杨翠 张建华
出处 《云南师范大学学报(自然科学版)》 2010年第2期11-14,共4页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金资助项目(10571114) 陕西省自然科学基础研究计划项目(2004A17)
关键词 三角代数 套代数 全可导点 Triangular algebra Nest algebra All -derivable point
  • 相关文献

参考文献8

  • 1Zhu J. , All - derivable points of operator algebras [ J]. Lin. Alg. Appl. 427 (2007), 1 - 5.
  • 2Zhu J. , Xiong C. P. , All - derivable points in continuous nest algebras I J]. J. Math. Anal. Appl. 340 (2008), 845 - 853.
  • 3Zhu J. , Xiong C. P. , Zhang R. Y. , All - derivable points in the algebra of all upper triangular matrices [J]. Lin. Alg. Appl. 429(2008), 804-818.
  • 4Lu F. Y. , Characterizations of derivations and Jordan derivations on Banaeh algebras [ J ]. Lin. Alg. Appl. 430(2009) , 2233 - 2239.
  • 5Wu J. , On Jordan all - derivable points of B(H) [ J]. Lin. Alg. Appl. 430(2009), 941-946.
  • 6Jing W. , Lu S. J. , Li P. T. , Characterizations of derivations on some operator algebras[ J]. Bull. Austral. Math. Soc. 66 ( 2002 ), 227 - 232.
  • 7Li J. K. , Pan Z. D. , Xu H. , Characterizations of isomorphisms and derivations of some algebras [ J ]. J. Math. Anal. Appl. 332(2007), 1314-1322.
  • 8Zhu J. , Xiong C. P. , Derivable mappings at unit operator on nest algebras [J]. Lin. Alg. Appl. 422 (2007) , 721 -735.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部