摘要
设G是具有奇数个顶点的图,k是非负整数且满足V(G)≥2k+1,若G中任意一个k-匹配都可以扩充为G的一个几乎完美匹配,则称G是几乎k-可扩图.文中证明了连通的几乎1-可扩图与2-连通的几乎k-可扩二部图分别添加一个新边后仍保持原来的可扩性.
Let G be a graph with odd order and k a non-negative number satisfing |V(G)|≥2k+1. G is called near k-extendable graph if any k-matching of G can be extended to a near perfect matching of G. In this paper, we prove that if G is a connected near/-extendable graph (resp. 2-connected near k-extendable graph), then there exists e ∈ E(G) such that G + e is still connected near 1-extendable (resp. 2-connected near k-extendable).
出处
《厦门理工学院学报》
2010年第1期18-20,23,共4页
Journal of Xiamen University of Technology
基金
福建省教育厅科技项目(JA08223)
关键词
几乎k-可扩图
几乎完美匹配
去边
加边
near k-extendable graphs
near perfect matching
deleting edge
adding edge