期刊文献+

测度空间上弱Poincar不等式的扰动

Perturbations of Weak Poincaré Inequalities on Measure Spaces
下载PDF
导出
摘要 在非负Radon测度组成的测度空间上,研究弱Poincar不等式的扰动,得到了扰动后还保持稳定的充分条件. Perturbations of weak Poincare inequalities are studied on measure spaces. As a result, a sufficient conditions are obtained for perturbations to the weak Poincare inequalities.
作者 钟俊江
出处 《厦门理工学院学报》 2010年第1期24-26,共3页 Journal of Xiamen University of Technology
基金 福建省教育厅科技项目(JB08210)
关键词 弱Poincar不等式 扰动 测度空间 weak Poincare inequality perturbation measure space
  • 相关文献

参考文献6

  • 1ROCKNER M, WANG F Y. Weak Poincare inequalities and L^2 convergence rates of Markov Semigroups [ J ]. Journal of Functional Analysis, 2001, 185(2) : 564-603.
  • 2WANG F Y. Functional Inequalities, Markov Semigroups and Spectral Theory [M]. Beijing: Science Press, 2005.
  • 3STANNAT W. On the Poincare inequality for infinitely divisible measure [ J ]. Potential Analysis, 2005, 23 (3) : 279-301.
  • 4钟俊江.一类无穷可分测度的弱Poincaré不等式[J].厦门理工学院学报,2008,16(2):56-60. 被引量:1
  • 5BAKRY D, LEDOUX M, WANG F Y. Perturbations of functional inequalities using growth conditions [J]. Journal de Mathematiques Pures et Appliques, 2007, 87(4) : 394-407.
  • 6CHAFAID D. Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities [ J ]. Journal of Mathematics of Kyoto University, 2004, 44(2) : 325-363.

二级参考文献1

  • 1Wilhelm Stannat. On the Poincaré Inequality for Infinitely Divisible Measures[J] 2005,Potential Analysis(3):279~301

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部