期刊文献+

基于SGT分布的贝叶斯统计推断的在险价值研究 被引量:1

Bayesian inference of VaR based on SGT distribution
原文传递
导出
摘要 在考虑金融数据的非正态分布的条件下,使用更接近市场实际的SGT(Skewed Generalizedt Distribution)分布取代正态分布,建立了基于SGT分布的VaR(Value-at-risk)计算模型,然后对于SGT分布的参数估计采用贝叶斯统计推断,提高了SGT分布的参数估计精度和VaR的度量准确性。并用上证指数对这个新方法做了实证检验,发现对于样本内的VaR的性能测试贝叶斯统计推断的结果和用SGT的最大似然估计结果相似,但都优于正态分布的结果,样本外的性能测试中贝叶斯统计推断的结果优于用SGT的最大似然估计和正态分布的结果. Value-at-risk(VaR) is a financial risk measurement technique,which has become a standard for financial risk management.This paper proposed a new improved approach to Value at Risk(VaR) in a framework of Bayesian inference using the skewed generalized t distribution(SGT).SGT distribution was used to substitute normal distribution,as it is closer to the true distribution of financial time series data.The SGT parameters were estimated via Bayesian interference formalism.This new approach was tested on a data set of Shanghai composite index.The results indicate that the VaR performs well on the in-sample evaluation while for the out-of-sample VaR test the Bayesian inference model is better than maximum likelihood estimation and normal distribution.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第3期419-425,共7页 Systems Engineering-Theory & Practice
关键词 在险价值 金融风险 SGT分布 贝叶斯统计推断 MCMC算法 VaR financial risk SGT distribution Bayesian inference MCMC
  • 相关文献

参考文献15

  • 1Jorin P. Value at Risk: The New Benchmark for Managing Financial Risk[M]. 3rd Ed. McGraw-Hill, 2006.
  • 2Longin F M. From value at risk to stress testing: The extreme value approach[J]. Journal of Banking and Finance,2000, 24: 1097-1130.
  • 3Bali T G. An extreme approach to estimating volatility and value-at-risk[J]. ,JoUrnal of Business, 2003, 76: 83-108.
  • 4Bali T G, Neftci S. Disturbing extreme behavior of spot rate dynamics[J]. Journal of Empirical Finance, 2003, 10: 455-477.
  • 5Billio M, Pelizzon L. Value-at-risk: A multivariate switching regime approach[J]. Journal of Empirical Finance, 2000, 7: 531-554.
  • 6Ryohei K, Masski K. Value-at-risk in a market subject to regime switching[J]. Quantitative Finance, 2007, 12 (7): 609-619.
  • 7Heikkinen V P, Kanto A. Value-at-risk estimation using noninteger degrees of freedom of student's distribution[J]. Journal of Risk, 2002, 4:77- 84.
  • 8Giot P, Laurent S. Value-at-risk for long and short positions[J]. Journal of Applied Econometrics, 2003, 18: 641-663.
  • 9Theodossiou P. Financial data and the skewed generalized T distribution[J]. Management Science, 1998, 44: 1650 -1661.
  • 10Bali T G, Theodossiou P. Risk measurement performance of alternative distribution functions[J]. Journal of Risk and Insurance, 2007, 75, 2: 411-437.

二级参考文献23

  • 1陈平.ESTIMATORS AND SOME BEHAVIORS FORA PARTIALLY LINEAR MODEL WITH CENSORED DATA[J].Acta Mathematica Scientia,1999,19(3):321-331. 被引量:2
  • 2孟庆芳,张强,牟文英.混沌序列自适应多步预测及在股票中的应用[J].系统工程理论与实践,2005,25(12):62-68. 被引量:8
  • 3Albert J H. Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 1992, (17):251- 269
  • 4Richard Patz J, Brian Junker W. A straightforward approach to Markov Chain Monte Carlo Methods for Item Response Models, Journal of Educational and Behaviorial Statistics, 1999, 24(2):146- 178
  • 5Richard Patz J, Brian Junker W. Application and Extensions of MCMC in IRT: Multipe Item Types, Missing Data, and Rated Responses. Journal of Educational and Behaviorial Statistics, 1999, 24(4) :342 - 366
  • 6Bradlow E T, Wainer H, Wang X. A Bayesian random effects model for testlets. Psychometrika, 1999, 64:153 - 168
  • 7Wainer H, Bradlow E T., Du Z. Testlet response theory:An analog for the 3PL model useful in adaptive testing. In: Van der Linden W J, Glas C A W. (Eds.). Computerized adaptive testing: Theory and practice. Boston, MA: Kluwer - Nijhoff, 2001 : 245 - 270
  • 8Hatz S M, Rousson L, Stout W. Skills diagnosis: Theory and practice(Technical Report). Princeton, NJ : Educational Testing Service
  • 9Jimmy D T, Douglas J A. Higher - order latenf trait models for cognitive diagnosis. Psychometrika, 2004, 69(3) : 333 - 353
  • 10Jiang Yanlin. Estimating parameters for multidimensional item response theory models by MCMC methods (unpublished doctoral dissertation). Michigan State University, 2005

共引文献47

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部