期刊文献+

Annihilation Coefficients, Binomial Expansions and q-Analogs

Annihilation Coefficients, Binomial Expansions and q-Analogs
下载PDF
导出
摘要 Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n,k;A) to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.2) The main result of this paper is an explicit formula for B(n,k;A), which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2). Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n,k;A) to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.2) The main result of this paper is an explicit formula for B(n,k;A), which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2).
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期191-204,共14页 数学研究与评论(英文版)
关键词 Annihilation coefficient Binomial expansion stirling number of the first kind stirling number of the second kind vadermonde convolution. Annihilation coefficient Binomial expansion stirling number of the first kind stirling number of the second kind vadermonde convolution.
  • 相关文献

参考文献3

  • 1GOULD H W. Annihilation Coefficients [M]. Nova Sci. Publ., Hauppauge, NY, 2002.
  • 2GOULD H W. The q-Stirling numbers of first and second kinds [J]. Duke Math. J., 1961, 28: 281-289.
  • 3GOULD H W. Final analysis of Vandermonde's convolution [J]. Amer. Math. Monthly, 1957, 64: 409-415.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部