摘要
Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n,k;A) to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.2) The main result of this paper is an explicit formula for B(n,k;A), which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2).
Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n,k;A) to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.2) The main result of this paper is an explicit formula for B(n,k;A), which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2).