期刊文献+

Commuting Hankel and Toeplitz Operators on the Hardy Space of the Bidisk 被引量:2

Commuting Hankel and Toeplitz Operators on the Hardy Space of the Bidisk
下载PDF
导出
摘要 In this paper, we characterize when the Toeplitz operator Tf and the Hankel operator Hg commute on the Hardy space of the bidisk. For certain types of bounded symbols f and g, we give a necessary and sufficient condition on the symbols to guarantee TfHg = HgTf. In this paper, we characterize when the Toeplitz operator Tf and the Hankel operator Hg commute on the Hardy space of the bidisk. For certain types of bounded symbols f and g, we give a necessary and sufficient condition on the symbols to guarantee TfHg = HgTf.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期205-216,共12页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant Nos.10671028 10971020)
关键词 Hankel operator Toeplitz operator Hardy space BIDISK commuting. Hankel operator Toeplitz operator Hardy space bidisk commuting.
  • 相关文献

参考文献14

  • 1BROWN A, HALMOS P R. Algebraic properties of Toeplitz operators [J]. J. Reine Angew. Math., 1963/1964, 213: 89-102.
  • 2MARTINEZ-AVENDANO R A, When do Toeplitz and Hankel operators commute? [J]. Integral Equations Operator Theory, 2000, 37(3): 341-349.
  • 3GUO Kunyu, ZHENG Dechao. Essentially commuting Hankel and Toeplitz operators [J]. J. Funct. Anal., 2003, 201(1): 121-147.
  • 4AXLER S, CUCKOVIC Z. Commuting Toeplitz operators with harmonic symbols [J]. Integral Equations Operator Theory, 1991, 14(1): 1-12.
  • 5STROETHOFF K. Essentially commuting Toeplitz operators with harmonic symbols [J]. Canad. J. Math., 1993, 45(5): 1080-1093.
  • 6AXLER S, CUCKOVIC Z, RAO N V. Commutants of analytic Toeplitz operators on the Bergman space [J]. Proc. Amer; Math. Soc., 2000, 128(7): 1951-1953.
  • 7CUCKOVIC Z, RAO N V. Mellin transform, monomial symbols, and commuting Toeplitz operators [J]. J. Funct. Anal., 1998, 154(1): 195-214.
  • 8GU Caixing, ZHENG Dechao. The semi-commutator of Toeplitz operators on the bidisc [J]. J. Operator Theory, 1997, 38(1): 173-193.
  • 9ZHENG Dechao. Commuting Toeplitz operators with pluriharmonic symbols [J]. Trans. Amer. Math. Soc., 1998, 850(4): 1595-1618.
  • 10LEE Y J. Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces [J]. Canad. Math. Bull., 1998, 41(2): 129-136.

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部