期刊文献+

Knots and Polynomials 被引量:1

Knots and Polynomials
下载PDF
导出
摘要 In this paper, we deal with some corresponding relations between knots and polynomials by using the basic properties of knot polynomials (such as, some special values of knot polynomials, the Arf invariant and derivative of knot polynomials). We give necessary and sufficient conditions that a Laurent polynomial with integer coefficients, whose breadth is less than five, is the Jones polynomial of a certain knot. In this paper, we deal with some corresponding relations between knots and polynomials by using the basic properties of knot polynomials (such as, some special values of knot polynomials, the Arf invariant and derivative of knot polynomials). We give necessary and sufficient conditions that a Laurent polynomial with integer coefficients, whose breadth is less than five, is the Jones polynomial of a certain knot.
机构地区 School of Mathematics
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期257-264,共8页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.10771023) the Liaoning Educational Committee (Grant No.2009A418)
关键词 KNOT Jones polynomial Laurent polynomial. knot Jones polynomial Laurent polynomial.
  • 相关文献

参考文献1

  • 1Xiaosong Lin,Zhenghan Wang Department of Mathematics, University of California, Riverside, CA 92521, U. S. A.Department of Mathematics, Indiana University, Bloomington, IN 47405, U. S. A. Department of Mathematics, University of California, La Jolla, CA 92093, U. S. A..On Ohtsuki's Invariants of Integral Homology 3-Spheres[J].Acta Mathematica Sinica,English Series,1999,15(3):293-316. 被引量:6

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部