期刊文献+

Existence of the Uniform Attractors for the Nonautonomous Suspension Bridge Equations with Strong Damping 被引量:1

Existence of the Uniform Attractors for the Nonautonomous Suspension Bridge Equations with Strong Damping
下载PDF
导出
摘要 In this paper we show the existence of the uniform attractors for the family of processes corresponding to the suspension bridge equations in H02 × L2 by a new concept of Condition (C*) and the enegy estimats methods. In this paper we show the existence of the uniform attractors for the family of processes corresponding to the suspension bridge equations in H02 × L2 by a new concept of Condition (C*) and the enegy estimats methods.
作者 Qiao Zhen MA
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期277-285,共9页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.10671158) the Education Department Foundation of Gansu Province (Grant No.0801-02) the Natural Sciences Foundation of Gansu Province (Grant No.3ZS061-A25-016) NWNU-KJCXGC-03-40
关键词 suspension bridge equations uniform attractors Condition (C*) uniform condition(C). suspension bridge equations uniform attractors Condition (C*) uniform condition(C).
  • 相关文献

参考文献15

  • 1LAZER A C, MCKENNA P J. Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis [J]. SIAM Rev., 1990, 32(4): 537-578.
  • 2HUMPHREYS L D. Numerical mountedn pass solutions of a suspension bridge equation [J]. Nonlinear Anal., 1997, 28(11): 1811-1826.
  • 3LAZER A C, MCKENNA P J. Large scale oscillatory behaviour in loaded asymmetric systems [J]. Ann. Inst. H. Poincare Anal. Non Lineaire, 1987, 4(3): 243-274.
  • 4MCKENNA P J, WALTER. W. Nonlinear oscillations in a suspension bridge [J]. Arch. Rational Mech. Anal., 1987, 98(2): 167-177.
  • 5CHOI Q H, JUNG T. A nonlineax suspension bridge equation with nonoonstant load [J]. Nonlinear Anal., 1999, 35(6): 649-668.
  • 6MA Qingfeng, WANG Shouhong, ZHONG Chengkui. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications [J]. Indiana Univ. Math. J., 2002, 51(6): 1541-1559.
  • 7TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Second edition) [M]. Springer-Verlag, New York, 1997.
  • 8BALL J M. Initial-boundary value problems for an extensible beam [J]. J. Math. Anal. Appl., 1973, 42: 61-90.
  • 9MA Qiaozhen, ZHONG Chengkui. Existence of global attractors for the suspension bridge equation [J]. Sichuan Daxue Xuebao, 2006, 43(2): 271-276.
  • 10ZHONG Chengkui, MA Qiaozhen,SUN Chunyou. Existence of strong solutions and global attractors for the suspension bridge equations [J]. Nonlinear Anal., 2007, 67(2): 442-454.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部