Existence Theorem of Solutions for Mixed Variational Inequality in Banach Spaces
Existence Theorem of Solutions for Mixed Variational Inequality in Banach Spaces
摘要
By using the property of generalized f-projection operator and FKKM theorem, the existence theorem of solutions for the mixed variational inequality is proved under weaker assumption in reflexive and smooth Banach space. The results improve and extend the corresponding results shown recentlv.
By using the property of generalized f-projection operator and FKKM theorem, the existence theorem of solutions for the mixed variational inequality is proved under weaker assumption in reflexive and smooth Banach space. The results improve and extend the corresponding results shown recentlv.
基金
Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No.07ZA098)
a grant from the "project 211(Phase Ⅲ)"
the Scientific Research Fund of the Southwestern University of Finance and Economics
参考文献10
-
1ALBER Y. Metric and GenerMized Projection Operators in Banach Spaces: Properties and Applications[C]. Proceedings of the Israel Seminar on Functional Differential Equations, Ariel, Israel, 1994, 1: 1-21.
-
2ALBER Y I. Metric and GenerMized Projection Operators in Banach Spaces: Properties and Applications [M]. Dekker, New York, 1996.
-
3ALBER, Y, GUERRE-DELABRIERE S. On the projection methods for fixed point problems [J]. Analysis (Munich), 2001, 21(1): 17-39.
-
4LI Jinlu. The generalized projection operator on reflexive Banach spaces and its applications [J]. J. Math. Anal. Appl., 2005, 306(1): 55-71.
-
5ZENG Liuchuan, YAO J C. Existence theorems for variational inequalities in Banach spaces [J]. J. Optim. Theory Appl., 2007, 132(2): 321-337.
-
6WU Keeling, HUANG Nanjing. The generalised f-projection operator with an application [J]. Bull. Austral. Math. Soc., 2006, 73(2): 307-317.
-
7WU Keqing, HUANG Nanjing. Properties of the generalized f-projection operator and its applications in Banach spaces [J]. Comput. Math. Appl., 2007, 54(3): 399-406.
-
8NOOR M A. A new iterative method for monotone mixed variational inequalities [J]. Math. Comput. Modelling, 1997, 26(7): 29-34.
-
9FAN K. A generalization of Tychonoff's Axed point theorem [J]. Math. Ann., 1960/1961, 142: 305-310.
-
10ZHANG Qingbang, DENG Ruliang, LIU Liu. Existence theorem and algorithm for a general implicit variational inequality in Banach space [J]. Applied Math. Comput., 2009, 215: 636-643.
-
1张宪.A Generalization of KKM Theorem[J].Journal of Mathematical Research and Exposition,1999,19(1):49-56.
-
2邓波.FKKM定理的推广[J].高师理科学刊,2000,20(1):9-10.
-
3傅俊义.一个等价于FKKM定理的向量变分不等式[J].南昌大学学报(理科版),1996,20(2):101-105.
-
4杨莉.关于FKKM定理和ky Fan极小极大不等式的推广及应用[J].重庆师范学院学报(自然科学版),1998,15(3):29-35.
-
5王国庭.FKKM定理与KyFan极大极小原理等价的证明[J].荆门大学学报,1996(1):1-2.
-
6陈清明.FKKM定理的一个新推广[J].西南师范大学学报(自然科学版),1997,22(5):498-504.
-
7李耀堂,刘改玲.广义KKM映象和FKKM定理的进一步推广[J].延安大学学报(自然科学版),1994,13(3):21-24.
-
8燕子宗,杜乐乐,刘永明.Brouwer不动点定理的初等证明[J].长江大学学报(自科版)(上旬),2008,5(1):15-17.
-
9龚循华,乐华明.向量均衡问题有效解与强解的存在性[J].南昌大学学报(理科版),2008,32(1):1-5. 被引量:8
-
10丁协平.最佳逼近和重合点定理[J].四川师范大学学报(自然科学版),1995,18(2):21-29. 被引量:1