期刊文献+

On the Depth and Hilbert Series of the Fiber Cone

On the Depth and Hilbert Series of the Fiber Cone
下载PDF
导出
摘要 Let (R,m) be a Cohen-Macaulay local ring of dimension d with infinite residue field, I an m-primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer k, KIn ∩ J = JKIn-1 for n ≤ k ? 1 and λ( JKKIIkk-1 ) = 1. We show that if depth G(I) ≥ d-2, then such fiber cones have almost maximal depth. We also compute, in this case, the Hilbert series of FK(I) assuming that depth G(I) ≥ d - 1. Let (R,m) be a Cohen-Macaulay local ring of dimension d with infinite residue field, I an m-primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer k, KIn ∩ J = JKIn-1 for n ≤ k ? 1 and λ( JKKIIkk-1 ) = 1. We show that if depth G(I) ≥ d-2, then such fiber cones have almost maximal depth. We also compute, in this case, the Hilbert series of FK(I) assuming that depth G(I) ≥ d - 1.
作者 Guang Jun ZHU
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期365-373,共9页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.10771152)
关键词 Cohen-Macaulay local ring fiber cone DEPTH Hilbert series associated gradedring multiplicity. Cohen-Macaulay local ring fiber cone depth Hilbert series associated gradedring multiplicity.
  • 相关文献

参考文献1

二级参考文献13

  • 1Bruns, W. and Herzog, J., Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, 1993, 150.
  • 2Cortadellas, T., Fiber cones with almost maximal depth, Comm. Algebra, 33, 2005, 953-963.
  • 3Corso, A., Polini, C. and Rossi, M. E., Depth of associated graded rings via Hilbert coefficients of ideals, J. Pure Appl. Algebra, 201, 2005, 126-141.
  • 4Elias, J., Rossi, M. E. and Valla, G., On the coefficients of the Hilbert polynomial, J. Pure Appl. Algebra, 108, 1996, 35-60.
  • 5Guerrieri, A. and Rossi, M. E., Hilbert coefficients of Hilbert filtration, J. Algebra, 199, 1998, 40-61.
  • 6Huckaba, S., A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients, Proc. Amer. Math. Soc., 124, 1996, 1393-1401.
  • 7Huckaba, S. and Marley, T., Hilbert coefficients and the depths of associated graded ring, J. London Math. Soc., 56(2), 1997, 64-76.
  • 8Huneke, C., Hilbert functions and symbolic powers, Michigan Math. J., 34, 1987, 293-318.
  • 9Jayanthan, A. V. and Verma, J. K., Hilbert coefficients and depths of fiber cones, J. Pure Appl. Algebra, 201, 2005, 97-115.
  • 10Jayanthan, A. V. and Verma, J. K., Fiber cones of ideals with almost minimal multiplicity, Nagoya Math. J., 177, 2005, 155-179.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部