摘要
Let (R,m) be a Cohen-Macaulay local ring of dimension d with infinite residue field, I an m-primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer k, KIn ∩ J = JKIn-1 for n ≤ k ? 1 and λ( JKKIIkk-1 ) = 1. We show that if depth G(I) ≥ d-2, then such fiber cones have almost maximal depth. We also compute, in this case, the Hilbert series of FK(I) assuming that depth G(I) ≥ d - 1.
Let (R,m) be a Cohen-Macaulay local ring of dimension d with infinite residue field, I an m-primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer k, KIn ∩ J = JKIn-1 for n ≤ k ? 1 and λ( JKKIIkk-1 ) = 1. We show that if depth G(I) ≥ d-2, then such fiber cones have almost maximal depth. We also compute, in this case, the Hilbert series of FK(I) assuming that depth G(I) ≥ d - 1.
基金
Supported by the National Natural Science Foundation of China (Grant No.10771152)