期刊文献+

中国消费者物价指数预测——基于小波变换与支持向量回归的分析 被引量:4

Forecasting Chinese Consumer Price Index——Using Wavelet and Support Vector Regression
原文传递
导出
摘要 将小波分析和支持向量回归(SVR)模型引入消费者物价指数CPI的时间序列分析中,利用小波降噪对原始时间序列进行小波变换,充分提取和分离金融时间序列的各种隐周期和非线性,把小波分解序列的特性和分解数据随尺度倍增而倍减的规律充分用于SVR支持向量回归模型的建模。将该方法应用于中国宏观经济指标CPI的分析与预测,可以有效预测CPI的变动方向,并显著提高CPI的预测精度。 This paper applies wavelet and support vector regression (SVR) to study various time series properties of Chinese consumer price index (CPI).Our model can forecast Chinese CPI more accurately than popular single-period models in the literature based on root mean square error(RMSE)mean absolute error(MAE)and direction accuracy(DA).
出处 《山西财经大学学报》 CSSCI 北大核心 2010年第2期1-8,共8页 Journal of Shanxi University of Finance and Economics
基金 国家自然科学基金资助项目(60675006)
关键词 小波分析 神经网络 支持向量回归 CPI wavelet neural network support vector regression CPI
  • 相关文献

参考文献24

  • 1Alvarez-Diaz M,Alvarez A.Forecasting Exchange Rates Using an Evolutionary Neural Network[J]. Applied Financial Economics Letters, 2007,3 ( 1-3 ) :5 -9.
  • 2Brooks C.Linear and Nonlinear (Non-) Forecastability of High-frequency Exchange Bates [J]. Journal of Forecasting, 1997,16:125-145.
  • 3Cao L.Support Vector Machines Experts for Time Series Forecasting[ J ]. Neurocomputing, 2003,51 ( 1-4):321.
  • 4Cao L,Tay F E H.Financial Forecasting Using Support Vector Machines[J]. Neural Computing & Applications,2001,10(2).
  • 5Chui, Charles K.An Introduction to Wavelets[ M ]. San Diego:Academic Press, 1992.
  • 6Cortes C, Vapnik V.Support Vector Networks [ J ]. Machine Learning, 1995,20:273-297.
  • 7Crowley P M.A Guide to Wavelets for Economists [ J ]. Journal of Economic Surveys, 2007,21 (2):207-267.
  • 8Diebold Francis X,Mariano Roborto S.Comparing Predictive Accuracy [J]. Journal of Business & Economic Statistics, 1995,13(3 ):253-263.
  • 9DiSario R,Saraoglu H,McCarthy J,Li H C.An Investigation of Long Memory in Various Measures of Stock Market Volatility, Using Wavelets and Aggregate Series[ J ]. Journal of Economics and Finance, 2008,32(2):136-147.
  • 10Elder J,Jin H J.Long Memory in Commodity Futures Volatility:A Wavelet Perspective [J]. Journal of Futures Markets, 2007,27(5 ):411-437.

同被引文献62

  • 1丁刚,钟诗胜.基于时变阈值过程神经网络的太阳黑子数预测[J].物理学报,2007,56(2):1224-1230. 被引量:16
  • 2戴稳胜,吕奇杰,David Pitt.金融时间序列预测模型——基于离散小波分解与支持向量回归的研究[J].统计与决策,2007,23(14):4-7. 被引量:8
  • 3李少民,吴韧强.世界石油价格的长期趋势预测[J].经济纵横,2007(5):110-111.
  • 4陈光华.人工神经网络在证券价格预测中的应用[J].计算机仿真,2007,24(10):244-248. 被引量:10
  • 5ML.Shih,B.W.Huang,Nan-Hsing Chiu,C.Chiu,W.Y.Hu.Farm price prediction using case-based reasoning approach-A case of broiler industry in Taiwan,Computers and Electronics in Agriculture 66 (2009)70-75.
  • 6Paresh Date,Rogemar Marmon,Anton Tenyakov.Filtering and forecasting commodity futures prices under an HMM framework,Energy Economics xxx (2013) xxx-xxx.
  • 7Ali Ghaffari,Samaneh Zare.A novel algorithm for prediction of crude oil price variation based on soft computing,Energy Economics 31 (2009)531-536.
  • 8Ying Fan,Qiang Liang,Yi-Ming Wei.A generalized pattem matching approach for multi-step prediction of crude oil price,Energy Economics 30 (2008) 889-904.
  • 9Lean Yu,Shouyang Wang,Kin Keung Lai.Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm,Energy Economics 30 (2008) 2623-2635.
  • 10Tai-Liang Chen,Ching-Hsue Cheng,Hia Jong Tesh.Fuzzy time-series based on Fibonacci sequence for stock price forecasting,Physica A 380 (2007)377-390.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部