期刊文献+

基于自适应SVM决策树的焊缝缺陷类型识别

Welding Defects Classification Based on Adaptive SVM Decision Tree
下载PDF
导出
摘要 针对传统X射线焊缝缺陷检测方法普遍存在分类识别精度不高的问题,提出了一种基于分离程度的自适应SVM决策树算法。首先对滤波后的X-Ray焊缝缺陷图像进行数学形态学重建,然后根据分离程度,每次将分离程度最大的缺陷类别首先分离出来,构造自适应二叉树的SVM分类器,从而达到了减小二叉树的累积误差,得到了分类性能优良的的SVM决策树,并用其对X-Ray焊缝缺陷图像进行分类识别。实验结果表明,该算法取得了好的分类精度和识别效果。 An adaptive SVM(Support Vector Machines) based on binary tree using the degree of separation is proposed in this paper, aiming at the problem that it' s difficult for traditional detection methods to accurately identify the welding defects of X-Ray images. Firstly, mathematical morphological reconstruction is applied to the filtered X-Ray images of welding defects. It is proposed to separate category of defects with the largest degree of separation as a priority, and to construct adaptive SVM classifiers based on binary tree, thus decreasing the accumulated error. Finally, a SVM decision tree of good classification performance can be obtained, which is used to classify and identify the X-Ray images of welding defects, and it shows that the algorithm has made a good classification and recognition accuracy results.
出处 《无损检测》 2010年第3期171-174,178,共5页 Nondestructive Testing
基金 成都信息工程学院自然科学与技术发展基金资助(csrf200805)
关键词 决策二叉树 支持向量机 分离程度 数学形态学 缺陷识别 Binary decision tree Support vector machine Degree of separation Mathematical morphology Welding defects classification
  • 相关文献

参考文献16

  • 1中国机械工程学会.射线检测[M].北京:机械工业出版社,1997:4-177.
  • 2李德元,邵成吉,徐鲁宁.焊接缺陷自动检测中区分典型条形缺陷判据的建立[J].焊接技术,1998(1):7-8. 被引量:4
  • 3傅德胜.焊接缺陷计算机自动识别模式的研究[J].控制与决策,1998,13(A07):469-474. 被引量:8
  • 4孙忠诚,李鹤岐,陶维道,曾祥照,阎培良.焊缝X射线实时探伤数字图象处理方法研究[J].无损检测,1992,14(2):37-39. 被引量:16
  • 5Nacereddine Nafa, Drai Redouane. Weld defect extraction and classification inradiographic testing based artificial neural networks[C]// Proceeding of 15th WCNDT. Roma:[s. n.],2000.
  • 6Kapustin A E, Bardusova I I. Computer technologies and X-ray flaw detection of welds[C]// Proceeding of 15th WCNDT. Roma:[s. n. ],2000.
  • 7Nacereddine N, Tridi M. Weld defects in industrial radiography based invariant attributes and neural networks[J]. Image and Signal Processing and Analysis, 2005(7) :15-17.
  • 8Burges C. A tutorial on support vector machines for pattern recognition [J]. Data mining and knowledge discovery, 1998,2(2) : 121-167.
  • 9Hus C W, Lin C J. Acompaison of methods for multiclass support vector machines[J]. IEEE Transaction on Neural Networks,2002,26(13) :414-425.
  • 10Brown M P, Grundy W N, Lin D, et al. Knowledgebased analysis of microarray gene expression data by using support vector machines[C]// Proceeding of the National Academy of Sciences of the USA. USA: [s. n. ],2000:262-267.

二级参考文献26

  • 1唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50
  • 2李晓宇,张新峰,沈兰荪.支持向量机(SVM)的研究进展[J].测控技术,2006,25(5):7-12. 被引量:45
  • 3Daum W,Rose P,Heidt H,et al.Automatic recognition of weld defects in x—ray inspection[J].British Journal of NTD.1987,29(3):79—82.
  • 4Kehoe A,Parker G A.Image processing for industrial radiographic inspection:Image enhancement[J].British Journal of NDT,1990,32(4):183—190.
  • 5Warren T,Ni J W.An automated radiographic NDT system for weld inspection[J].NDT&E International,1996,29(3):157—162.
  • 6Katoh Y,Okumura T,Itoga K,et al.Development of the automatic system for radiographic film interpretation(I)[J].NDT of Japan,1992,41(4):186—195.
  • 7Pal S K,Mitra S.Multi—layer perception,fuzzy sets and classification [J].IEEE Trans on Neural Network,1992,3(5):683—697.
  • 8徐鲁宁,李德元,邵成吉.工业X射线底片计算机检测的界面实现[J].沈阳工业大学学报,1997,19(2):56-60. 被引量:2
  • 9GB3323-87.钢熔化焊对接接头射线照相和质量分级[J].[S].,..
  • 10Warren T, Ni J W. An automated radiographic NDT system for weld inspection[J]. NDT & E International, 1996, 29(3):157-162.

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部