摘要
传统的多目标进化算法能够有效地解决2个或3个目标的优化问题,但当优化目标超过4维即具有高维目标时,其优化效果将大大下降,因此高维多目标进化算法的研究得到了较多的关注.鉴于此,对高维多目标进化算法的研究进展进行系统地分类综述,分析了高维目标对优化算法造成的困难以及改进的可视化技术;总结了各类算法的特点与缺陷,并给出进一步可能的研究方向.
The conventional multi-objective evolutionary algorithms (MOEAs) can solve two-objective optimization problems successfully,but their search ability and performance will deteriorate badly when the number of objectives exceeds four. So,large-dimensional multi-objective evolutionary algorithms are attracting more attention. The large-dimensional multi-objective evolutionary algorithms are surveyed systematically by categories. The influences of large-dimensional objectives bringing on optimization problems are analyzed,and the visualization techniques are introduced. Finally,the proposed algorithms are evaluated and topics for future research are suggested.
出处
《控制与决策》
EI
CSCD
北大核心
2010年第3期321-326,共6页
Control and Decision
基金
国家973计划项目(2009CB320601)
国家自然科学基金项目(60534010
60821063
60904079)
国家111引智计划项目(B08015)