期刊文献+

高维多目标进化算法研究综述 被引量:50

Survey on large-dimensional multi-objective evolutionary algorithms
原文传递
导出
摘要 传统的多目标进化算法能够有效地解决2个或3个目标的优化问题,但当优化目标超过4维即具有高维目标时,其优化效果将大大下降,因此高维多目标进化算法的研究得到了较多的关注.鉴于此,对高维多目标进化算法的研究进展进行系统地分类综述,分析了高维目标对优化算法造成的困难以及改进的可视化技术;总结了各类算法的特点与缺陷,并给出进一步可能的研究方向. The conventional multi-objective evolutionary algorithms (MOEAs) can solve two-objective optimization problems successfully,but their search ability and performance will deteriorate badly when the number of objectives exceeds four. So,large-dimensional multi-objective evolutionary algorithms are attracting more attention. The large-dimensional multi-objective evolutionary algorithms are surveyed systematically by categories. The influences of large-dimensional objectives bringing on optimization problems are analyzed,and the visualization techniques are introduced. Finally,the proposed algorithms are evaluated and topics for future research are suggested.
出处 《控制与决策》 EI CSCD 北大核心 2010年第3期321-326,共6页 Control and Decision
基金 国家973计划项目(2009CB320601) 国家自然科学基金项目(60534010 60821063 60904079) 国家111引智计划项目(B08015)
关键词 PARETO支配 高维目标 多目标进化算法 可视化技术 Pareto dominance Large-dimensional objectives MOEA Visualization techniques
  • 相关文献

参考文献50

  • 1Fonseca C M, Fleming P J. Genetic algorithm for multiobjective optimization: Formulation, discussion and generalization [C]. Proc of 5th ICGA. San Mateo: Morgan Kaufmann Publishers, 1993 : 416-423.
  • 2Deb K, Amrit P, Sameer A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J] IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197.
  • 3Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach [J]. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271.
  • 4Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2) 149-172.
  • 5Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design[ J ]. Structural and Multidiseiplinary Optimization, 1992, 4(2): 99-107.
  • 6Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Proc of 1st Int Conf on Genetic Algorithms and Their Application. Hillsdale: L. Erlbaum Associates Inc, 1985: 93-100.
  • 7Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: John Wiley and Sons Inc, 2001.
  • 8Coello C A C, Lamont G B. Applications of multiobjective evolutionary algorithms [M]. Singapore: World Scientific Publisher, 2004.
  • 9Coello C A C, Lamont G B, Veldhuizen D A V. Evolutionary algorithm for solving multi-objective problems[M]. New York: Kluwer Academic Publisher, 2007.
  • 10Purshouse R C, Fleming P J. Evolutionary manyobjective optimization: An exploratory analysis [C]. Proc of 2003 IEEE Congress on Evolutionary Computation. Canberra: IEEE Service Center, 2003: 2066-2073.

同被引文献436

引证文献50

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部