期刊文献+

基于两阶段领导的多目标粒子群优化算法 被引量:18

Multi-objective PSO optimization algorithm based on two stages-guided
原文传递
导出
摘要 提出一种基于两阶段领导的多目标粒子群算法(P-AMOPSO).该算法包含4个改进策略:基于强支配排序与拥挤距离排序相结合的构造外部集策略,基于两阶段的领导粒子选择策略,基于高斯分布及均匀分布相结合的变异策略,基于邻域认知的个体极值更新策略.通过几个典型的多目标测试函数对P-AMOPSO算法的性能进行测试,并与多目标优化算法进行对比.结果表明,P-AMOPSO算法具有较好的搜索性能. This paper introduces a multi-objective particle swarm optimization algorithm (P-AMOPSO) based on two stages-guided,which includes four improved strategies,the strategy of constructing external data set based on combining strong predominance ranking and crowding distance ranking,the strategy of selecting guided particle based on two stages,the strategy of mutation based on combining Gaussian distribution mutation and uniform distribution mutation,and the strategy of updating based on personal best of neighborhood consciousness. Some benchmark functions are tested for comparing the performance of P-AMOPSO. The results show the better search performance of P-AMOPSO.
出处 《控制与决策》 EI CSCD 北大核心 2010年第3期404-410,415,共8页 Control and Decision
基金 国家863计划项目(2006AA060201)
关键词 粒子群算法 多目标优化 两阶段领导 变异 PSO Multi-objective optimization Two stages-guided Mutation
  • 相关文献

参考文献15

  • 1Li X D. A nondominated sorting particle swarm optimizer for multiobjectlve optimization [J]. Lecture Notes in Computer Science, 2003, 2723: 37-48.
  • 2Xiong S W, Liu L, Wang Q, et al. Improved multiobjective particle swarm algorithm [ J ]. J of Wuhan University, 2005, 51(3): 308-312.
  • 3Alvarez-benitez J, Everson R. A MOPSO algorithm based exclusively on Pareto dominance concepts [J]. Lecture Notes in Computer Science, 2005, 3410: 459- 473.
  • 4金欣磊,马龙华,刘波,钱积新.基于动态交换策略的快速多目标粒子群优化算法研究[J].电路与系统学报,2007,12(2):78-83. 被引量:9
  • 5雷德明,吴智铭.Pareto档案多目标粒子群优化[J].模式识别与人工智能,2006,19(4):475-480. 被引量:25
  • 6Coello Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3) : 256-279.
  • 7Li X D. Better spread and convergence: Particle swarm multi-objective optimization using the maximin fitness function[C]. Proc of the Genetic and Evolutionary Computation Conf. Heidelberg, 2004: 117-128.
  • 8Vlachogiannis J G, Lee K Y. Determining generator contributions to transmission system using parallel vectorevaluated particle swarm optimization [J], IEEE Trans on Power Systems, 2005, 20(4): 1765-1774.
  • 9Alvarez-Benitez J E, Everson R M, Fieldsend J E. AMOPSO algorithm based exclusively on pareto dominanceconcepts [C]. The 3rd Int Conf on Evolutionary Multi-criterion Optimization. Guanajuato: LNCS, 2005: 459-473.
  • 10张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225

二级参考文献72

  • 1张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 2俞欢军,张丽平,陈德钊,宋晓峰,胡上序.复合粒子群优化算法在模型参数估计中的应用[J].高校化学工程学报,2005,19(5):675-680. 被引量:19
  • 3Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 4Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. Proc IEEE Int Conf on Evolutionary Computation. Piseataway: IEEE Service Center, 2002, 2: 1051-1056.
  • 5Hu X, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proc IEEE Int Conf on Evolutionary Computation. Honolulu, 2002, 2: 1677-1681.
  • 6Fieldsend J E, Singh S. A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence[C]. Proc UK Workshop on Computational Intelligence. Birmingham, 2002:37-44.
  • 7Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 8Reyes-Sierra M, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-Art[J]. Int J of Computational Intelligence Research, 2006, 2 (3) : 287-308.
  • 9Ratnaweera A, Halgamuge S K, Watson H C. Self- organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjeetive genetic algorithm: NSGA-U [J].IEEE Trans on Evolutionary Computation, 2002, 6(2) : 182- 197.

共引文献278

同被引文献264

引证文献18

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部