摘要
环R称为单位正则环,如果对任何x∈R,有可逆元u∈R使得x=xux.文章利用零化子刻画了单位正则环,证明了正则环是单位正则环当仅当l(a)∩l(b)=l(d)时,有y∈R使得l(a)∩l(b)=l(a+by),当仅当l(a)=l(b)时,有u∈U(R)使得a=bua.
A ring R is unit-regular provided that for any x E R, there exists an invertible u E R such that x= xux. The paper has characterized the unit-regular ring by means of annihilators, proved that a regular ring R is unit-regular if and only if whenever t(a)∩t(b)=t(d), there exists y∈R such that l(a)∩t(b)=t(a+by), and if and only if whenever t(a)=t(b), there exists uE U(R) such that a=bua.
出处
《杭州师范大学学报(自然科学版)》
CAS
2010年第1期1-5,共5页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
Supported by the Natural Science Foundation of Zhejiang Province (Y6090404)
关键词
零化子
单位正则环
稳定秩1
annihilator
unit-regular ring
stable range one