期刊文献+

单位正则环中的零化子(英文)

Annihilators in Unit-Regular Rings
下载PDF
导出
摘要 环R称为单位正则环,如果对任何x∈R,有可逆元u∈R使得x=xux.文章利用零化子刻画了单位正则环,证明了正则环是单位正则环当仅当l(a)∩l(b)=l(d)时,有y∈R使得l(a)∩l(b)=l(a+by),当仅当l(a)=l(b)时,有u∈U(R)使得a=bua. A ring R is unit-regular provided that for any x E R, there exists an invertible u E R such that x= xux. The paper has characterized the unit-regular ring by means of annihilators, proved that a regular ring R is unit-regular if and only if whenever t(a)∩t(b)=t(d), there exists y∈R such that l(a)∩t(b)=t(a+by), and if and only if whenever t(a)=t(b), there exists uE U(R) such that a=bua.
作者 陈焕艮
出处 《杭州师范大学学报(自然科学版)》 CAS 2010年第1期1-5,共5页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 Supported by the Natural Science Foundation of Zhejiang Province (Y6090404)
关键词 零化子 单位正则环 稳定秩1 annihilator unit-regular ring stable range one
  • 相关文献

参考文献10

  • 1Marks G. A criterion for unit-regularity[J]. Acta Math Hungra,2006,111:311-312.
  • 2Ara P. Strongly T-regular ring have stable range one[J]. Proc Amer Math Soc, 1996,124:3293-3298.
  • 3Camillo V, Yu Huaping. Stable range one for rings With many idempotents[J]. Trans Amer Math Soc,1995,347:3141-3147.
  • 4Chen Huanyin. Exchange rings with artinian primitive factors[J]. Algebra Represent Theory,1999(2):201-207.
  • 5Chen Huanyin. Exchange rings with stable range one[J]. Czechoslovak Math J,2007,57(2):579-590.
  • 6Camillo V P, Khurana D: A characterization of unit regular rings[J]. Comm Algebra,2001,29:2293-2295.
  • 7Goodearl K R. Von neumann regular rings[M]. Malabar, Fla: Krieger Publishing Co, 1991.
  • 8Tuganbaev A A. Rings close to regular[M]. Dordrecht, Boston, London: Kluwer Academic Publishers,2002.
  • 9Wei Jiaqun. Unit-regularity and stable range conditions[J]. Comm Algebra,2005,33:1937-1946.
  • 10Chen Huanyin. Rings with stable range conditions[J]. Comm Algebra, 1998,26:3653-3668.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部