期刊文献+

一种小样本支持的多级最小模级联相消器 被引量:1

A Multistage Minimal Module Cascaded Canceller Under Small Samples Support
下载PDF
导出
摘要 该文针对阵列信号自适应相消器运算量大、收敛性能易受相关干扰影响等缺点,提出了一种改进的阵列信号多级级联相消器方法,该方法用通道间具有最小模的样本商作为复权,替代多级维纳滤波器的权值计算,具有收敛速度快、运算量小等特点,且对受相关干扰影响的非平稳数据工作性能良好。仿真结果表明,此算法用较少样本就可取得采样协方差求逆(SMI)类算法相同的收敛性能。 Due to the defects of high complexity and instability convergence performance in the array signal adaptive canceller under the correlated interference,an enhanced array signal multistage cascaded canceller is proposed by substituting the weights of the multistage Winner filter for the minimal module weights,which have the minimal module of the samples quotient between channels.The enhanced algorithm has the ability of fast convergence,less operation and performs well with non-stationary samples distorted by the correlated interference.Simulation results indicate the algorithm can reach convergent performance of the kind of Sample Matrix Inversion (SMI) algorithm using less samples.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第3期533-538,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60672130 60602053) 教育部新世纪优秀人才支持计划(NCET-08-0891)资助课题
关键词 阵列信号处理 采样协方差求逆 低复杂度 最小模级联相消器 中位数级联相消器 Array signal processing Sample Matrix Inversion(SMI) Low complexity Minimal Module Cascaded Canceller (MMCC) Median Cascaded Canceller(MCC)
  • 相关文献

参考文献3

二级参考文献37

  • 1黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 2Goldstein J S,Reed I S.Seharf L L.A Multistage Representation of the Wiener Filter Based on Orthogonal Proiections[J].IEEE Trans on Inform Theory,1998,44(7):2943-2959.
  • 3Goldstein J S,Reed I S,Zulch P A.Multistage Partially Adaptive STAP CFAR Detection Algorithm[J].IEEE Trans on Aerospace and Electronic Systems,1999,35(2):645-661.
  • 4Goldstein J S,Reed I S.A New Method of Wiener Filtering and Its Application to Interference Mitigation for Communications[C]//Proc MILCOM 1997:Vol 3.Monterey:MILCOM,1997:1087-1091.
  • 5Picciolo M L,Gerlach K.Median Cascaded Canceller for Robust Adaptive Array Processing[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(3):883-900.
  • 6Picciolo M L,Gerlach K.An Adaptive Multistage Median Cascaded Canceller[C]//IEEE CNF IEEE Radar Conference 2002.Long Beach:IEEE.2002:22-25.
  • 7Picciolo M L,Gerlach K.Reiterative Median Cascaded Canceler for Robust Adaptive Array Processing[J].IEEE Trans on Aerospace and Electronic Systems,2007,43(2):428-442.
  • 8Goldstein J S,Reed I S.Performance Measures for Optimal Constrained Beamformers[J].IEEE Trans on Antennas and Propagation.1997(45):11-14.
  • 9Schmidt R O. A Signal Subspace Approach To Multiple Emitter Location Spectral Estimation[D]. Stanford, CA: Stanford Univ, 1981.
  • 10Ray R, Kailath T. ESPRIT-estimation of signal paxameters via rotational invariance techniques[J]. IEEE Trans ASSP, 1989,37(7):948-955.

共引文献51

同被引文献10

  • 1Goldstein J S, Reed I S, and Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections [J]. IEEE Transactions on Information Theory, 1998, 44(7): 2943-2959.
  • 2Werner S, With M, and Koivunen V. Householder multistage Wiener filter for space-time navigation receivers [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 975-988.
  • 3De Lamare R C and Sampaio-Neto R. Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters[J]. IEEE Signal Processing Letters, 2007, 14(12): 980-983.
  • 4De Lamare R C and Sampaio-Neto R. Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and filtering[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2503-2514.
  • 5Carini A. Efficient NLMS and RLS algorithms for perfect and imperfect periodic sequences [J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2048-2059.
  • 6Graham W P. Analysis of a nonlinear least squares procedure used in global positioning systems [J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4526-4534.
  • 7Yukawa M, De Lamare R C, and Yamad I. Robust reduced-rank adaptive algorithm based on parallel subgradient projection and Krylov subspace[J]. IEEE Transactions on Signal Processing, 2009, 57(12): 4660-4674.
  • 8Picciolo M L and Gerlach K. Median cascaded canceller for robust adaptive array processing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 883-900.
  • 9Picciolo M L and Gerlach K. An adaptive multistage median cascaded canceller[C]. IEEE Conference Proceeding IEEE Radar Conference 2002, Long Beach, 2002: 22-25.
  • 10Picciolo M L and Gerlach K. Reiterative median cascaded canceller for robust adaptive array processing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 428-442.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部