期刊文献+

一种时间序列频繁模式挖掘算法及其在WSAN行为预测中的应用 被引量:5

Time Series Frequent Pattern Mining Algorithm and its Application to WSAN Behavior Prediction
下载PDF
导出
摘要 该文提出FPM(Frequent Pattern Mining)算法充分考虑频繁模式在时间序列中出现次数和分布。基于这些不同分布的频繁模式扩展MAMC(Mixed memory Aggregation Markov Chain)模型提出FMAMC(Frequent pattern based Mixed memory Aggregation Markov Chain)模型。将FPM和FMAMC应用到实际的智能楼宇项目中,证明和现有算法相比FPM算法具有较好的时间性能,FMAMC模型能够比MAMC模型更准确的预测WSAN节点行为。 A frequent pattern mining algorithm FPM (Frequent Pattern Mining) is proposed.FPM not only considered the frequency but also the distribution of the frequent pattern along the time series.Based on these different types of frequent patterns,MAMC (Mixed memory Aggregation Markov Chan) is extended to FMAMC (Frequent pattern based Mixed memory Aggregation Markov Chan) model.The proposed algorithm and model are applied to a smart building project,experiment and practice both demonstrate FPM is efficient than existing algorithms and FMAMC model could more accurately predict the node behavior in WSAN than MAMC.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第3期682-686,共5页 Journal of Electronics & Information Technology
基金 国家杰出青年科学基金(60525110) 国家973计划项目(2007CB307100 2007CB307103) 电子信息产业发展基金(基于3G的移动业务应用系统)资助课题
关键词 数据挖掘 时间序列 频繁模式挖掘 无线传感器自组织网络节点行为预测 智能楼宇 Data mining Time series Frequent Pattern Mining (FPM) WSAN behavior prediction Smart building
  • 相关文献

参考文献10

  • 1Boukerche A. Handbook of Algorithms for Wireless Networking and Mobile Computing. Chapman & Hall/ CRC, 2005.
  • 2Boukerche A and Samarah S. A novel algorithm for mining association rules in wireless Ad hoc sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(7): 143-160.
  • 3Laxman S. Stream prediction using a generative model based on frequent episodes in event. Knowledge Discovery and Data Mining Conference, Las Vegas, US. Aug. 24 27, 2008: 101-110.
  • 4Laxman S, Sastry P S, and Unnikrishnan K P. Discovering frequent episodes and learning Hidden Markov Models: A formal connection. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1505-1517.
  • 5Chudova D and Smyth P. Pattern discovery in sequences under a Markovian assumption. Knowledge Discovery and Data Mining Conference, Alberta, Canada, July 17-19 2002: 109-118.
  • 6Alon J, Sclaroff S, Kollios G, and Pavlovic V. Discovering clusters in motion time series data. Computer Vision and Pattern Recognition Conference, Wisconsin, U S, June 2003:Ⅰ-375-Ⅰ-381.
  • 7Wang X and Kaban A. A dynamic bibliometric model for identifying online communities. Journal of Data Mining Knowledge Discovery, 2008, 10(3): 42-68.
  • 8Kiernan J summaries and Terzi E. Constructing comprehensive of large event sequences. Knowledge Discovery and Data Mining Conference, Las Vegas, U.S. Aug. 24-27, 2008: 131-140.
  • 9Pei J, Han J, Pinto H, Chen Q, Dayal U, and Hsu M C. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. International Conference of Data Engineering, Heidelberg, Germany, 2001: 215-224.
  • 10M'eger N and Rigotti C. Constraint-based mining of episode rules and optimal window sizes. 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, Pisa, Italy, 2004: 313-324.

同被引文献47

  • 1张晓宁,戴青.基于数据挖掘的分布式入侵检测系统研究[J].无线电工程,2004,34(9):19-21. 被引量:3
  • 2沈云斐,李丹,陶琨,覃征.基于关联规则和情景规则的网络告警分析模型[J].小型微型计算机系统,2007,28(2):271-273. 被引量:5
  • 3Chiu Po-huan, Kao Yi-ming, and Lo Chi-chun. Personalized blog content recommender system for mobile phone users[J]. International Journal of Human-Computer Studies, 2010, 68(8): 496-507.
  • 4刘经南,郭迟,彭瑞卿.移动互联网时代的位置服务[J].中国计算机学会通讯,2011,12(7):40-50.
  • 5Santo F. Community detection in graphs[J]. Physics Reports, 2010, 486(3-5): 75-174.
  • 6Palla G, Derenyi I, and Farkas I. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435: 814-818.
  • 7Raghavan U N, Albert R, and Kumara S. Near linear time algorithm to detect community structures in largemscale networks[J]. Physical Review E, 2007, 76(3): 036106(1-11).
  • 8Gregory S. Finding overlapping communities in networks by label propagation[J]. New Journal of Physics, 2010, 12(10): 103018.
  • 9Wang Li-cai, Meng Xiang-wu, and Zhang Yu-jie. A heuristic approach to social network-based and context-aware mobile services recommendation[J]. Journal of Convergence Information Technology, 2011, 6(10): 339-346.
  • 10Radde N. Fixed point characterization of biological networks with complex graph topology[J]. Bioinformatics, 2010, 26(22): 2874-2880.

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部