期刊文献+

基于提升小波滤波器的模式识别

Pattern Recognition Using Lifting Wavelet Filters
下载PDF
导出
摘要 文章提出了一种基于提升小波滤波器的模式识别方法。由目标图像的高频分量的两种不同类型的提升,我们引出了一个差分方程,且该方程是包含提升滤波器的自由参数的椭圆方程逆问题的近似。因为这个离散的逆问题是病态问题,所以方程中自由参数的值可以用正则化方法和最小二乘方法来确定。模式识别可以通过将学习提升小波滤波器作用于查询图像来实现。 A method of pattern recognition using learned lifting wavelet filters is proposed. First, we derive a difference equation from two kinds of lifting high pass components of a target image. The difference equation is an approximation of an inverse problem of an elliptic equation, which includes free parameters of the lifting filter. Since this discrete inverse problem is ill--conditioned, the free parameters are learned by using the least square method and regularization method Pattern recognition is clone by applying the learned lifting filter to a query image.
出处 《新疆师范大学学报(自然科学版)》 2010年第1期47-50,共4页 Journal of Xinjiang Normal University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10661010) 新疆维吾尔自治区自然科学基金资助项目(200721104)
关键词 提升小波滤波器 差分方程 逆问题 正则化 学习 人脸识别 Lifting wavelet filter Difference equation In- verse problem Regularization Learning Face recognition
  • 相关文献

参考文献5

  • 1T. Abdukirim, K. Niijima. and S. Takano, Design of biorthogonal wavelet filters using dyadic lifting scheme, Bulletin of Informaties and Cybernetics, 2005, 37(1) : 123-136.
  • 2L. Wiskott, J.M. Fellous, N. Krflger, and C. vonder Malsburg, Face recognition by elastic bunch graph matching, IEEE Transaction on PAMI, 1997,19(7): 775-779.
  • 3M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Congnitive Neuro-science, 1991, 3(1): 71-86.
  • 4E. Osuna, R. Freund, and F. Girosi, Training support vector machines: An application to face detection, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 1997, 130-136.
  • 5W. Sweldens, The lifting seheme:A custom--design construction of bi--orthogonal wavelets. Appl. Comput. Harmon. Anal. , 1996, 3 (2):186- 200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部