期刊文献+

Diophantine方程(m+n)^2=m+n!的正整数解

Positive integer solution of Diophantine equation (m + n)^2 = m + n!
下载PDF
导出
摘要 利用二次剩余理论,证明了Diophantine方程(m+n)2=m+n!仅有正整数解(m,n)=(1,4). With the method of quadratic residue theory, proved that the Diophantine equation (m + n)^2 = m + n! has only positive integer solution (m, n) : (1, 4).
作者 赵丕卿
出处 《高师理科学刊》 2010年第2期27-28,共2页 Journal of Science of Teachers'College and University
基金 山东省教育厅科技计划项目(J06P04) 青岛科技大学科研启动基金资助项目(0022327)
关键词 不定方程 正整数解 二次剩余理论 Diophantine equation positive integer solution quadratic residue theory
  • 相关文献

参考文献4

二级参考文献13

  • 1Terai, N., The diophantine equation x^2+ q^m= p^n, Acta Arith., 1993, 63(4): 351-358.
  • 2Yuan P.Z. and Wang J.B., On the diophantine equation x^2 + b^y = c^z, Acta Arith., 1998, 84: 145-147.
  • 3Le M.H., A note on the diophantine equation x^2 + b^y = c^z, Acta Arith., 1995, 71: 253-257.
  • 4Cao Z.F. and Dong X.L., On Terai's conjecture, Proc. Japan Acad. Ser.A Math. Sci., 1998, 74(8): 127-129.
  • 5Cao Z.F. and Dong X.L., A new conjecture on the diophantine equation x^2 + b^y= c^z, Proc. Japan Acad. Ser.A Math. Sci., 2002, 78(10): 199-202.
  • 6Le M.H., A note on the diophantine equation x^2 + b^y = c^z, Czechoslovak nathematical Journal. 2006, 56 (4): 1109-1116.
  • 7Bilu, Y., Hanrot, G. and Voutier, P.(with an appendix by Mignotte, M.), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew Math., 2001, 539: 75-122.
  • 8Dong X.L. and Cao Z.F., On Terai-Jesmanowicz conjecture concerning the equation a^x +b^y =c^z, Chinese Math. Ann., 2000, 21(A): 709-714.
  • 9Mordell, L.J., Diophantine Equations, London: Academic Press, 1969.
  • 10余元希,田万海,毛宏德.初等代数研究[M].北京:高等教育出版社,2005:465-467.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部