摘要
P(z)=∑v=0^n cvz^vbe a polynomial of degree n and let M(f, r) = max|z|=r |f(z) | for an arbitrary entire function f(z). If P(z) has no zeros in |z| 〈 1 with M(P,1) = 1, then for |α| 〈 1, it is proved by Jain[Glasnik Matematicki, 32(52) (1997), 45-51] that|P(Rz)+α(R+1/2)^nP(z)|≤1/2{|1+α(R+1/2)^n|+|R^n+α((R+1/2)^n|},R≥1,|z|=1. In this paper, we shall first obtain a result concerning minimum modulus of polynomials and next improve the above inequality for polynomials with restricted zeros. Our result improves the well known inequality due to Ankeny and Rivlin and besides generalizes some well known polynomial inequalities proved by Aziz and Dawood.
P(z)=∑v=0^n cvz^vbe a polynomial of degree n and let M(f, r) = max|z|=r |f(z) | for an arbitrary entire function f(z). If P(z) has no zeros in |z| 〈 1 with M(P,1) = 1, then for |α| 〈 1, it is proved by Jain[Glasnik Matematicki, 32(52) (1997), 45-51] that|P(Rz)+α(R+1/2)^nP(z)|≤1/2{|1+α(R+1/2)^n|+|R^n+α((R+1/2)^n|},R≥1,|z|=1. In this paper, we shall first obtain a result concerning minimum modulus of polynomials and next improve the above inequality for polynomials with restricted zeros. Our result improves the well known inequality due to Ankeny and Rivlin and besides generalizes some well known polynomial inequalities proved by Aziz and Dawood.
基金
Supported by Council of Scientific and Industrial Research, New Delhi, under grant F.No. 9/466(95)/2007-EMR-I