期刊文献+

微分方程模糊初值问题的解 被引量:7

Solution of Fuzzy Differential Equation
原文传递
导出
摘要 研究了一阶线性微分方程模糊初值问题,利用模糊微分方程的刻画方程和初值之间的关系,给出了一阶线性微分方程模糊初值问题的一种求解方法,讨论了同基于Hukuhara微分求解方法之间的关系,证明了在一定条件下两种方法是等价的,文中的实例说明了这一点. This paper studies the first order linear fuzzy differential equation with fuzzy initial value, introduces a kind of method for solving fuzzy initial value problems by the relationship between the depict equation of fuzzy differential equation and initial value, studies the relationship between the presents method and the method by Hukuhara differentiability, we conclusion that the two methods are equivalent, which is illustrated by some examples.
作者 王磊
出处 《数学的实践与认识》 CSCD 北大核心 2010年第5期192-196,共5页 Mathematics in Practice and Theory
关键词 三角模糊数 Hukuhara微分 刻画方程 模糊初值 triangular fuzzy number hukuhara differentiability depict equation fuzzy initial value problems
  • 相关文献

参考文献7

  • 1Diamond P. Time-dependent differential inclusions, Cocycle attractors and fuzzy differential equations[J]. [EEE Transactions on Fuzzy System, 1999, 7: 734-740.
  • 2Hullermeier E. An approach to modeling and simulation of uncertain dynamical systems[J]. International Journal of Uncertainty, Fuzziness Knowledge-Bases System, 1997, 5: 117- 137.
  • 3Kaleva O. A note on fuzzy differential equations[J]. Nonlinear Analysis, 2006, 64: 895-900.
  • 4郭嗣琮,王磊.模糊限定微分方程及定解问题[J].工程数学学报,2005,22(5):869-874. 被引量:10
  • 5王磊.基于模糊结构元的一阶模糊微分方程[J].佳木斯大学学报(自然科学版),2008,26(6):817-819. 被引量:10
  • 6Purl M, Ralescu D. Differentials of fuzzy functions[J]. Journal of Mathematical Analysis and Applications, 1983, 91: 552-558.
  • 7Bede B. Note on "numerical solutions of fuzzy differential equations by predictor corrector method" [J].Information Sciences, 2008, 178(7): 1919-1922.

二级参考文献16

  • 1郭嗣琮.基于结构元方法的模糊值函数分析学表述理论[J].自然科学进展,2005,15(5):547-552. 被引量:11
  • 2郭嗣琮,王磊.模糊限定微分方程及定解问题[J].工程数学学报,2005,22(5):869-874. 被引量:10
  • 3罗承忠 王德谋.区间值函数积分的推广与Fuzzy值函数的积分[J].模糊数学,1983,(3):45-52.
  • 4O. Kaleva, Fuzzy Differential Equations[J]. Fuzzy Sets and Systems, 1987,24:301-317.
  • 5P. Diamond, Tune- dependent Differential Inclusions, Cocycle Attractors and Fuzzy Differential Equations [ J ]. IEEE Transactions on Fuzzy System, 1999,7:734-740.
  • 6E. Hullermeier, An Approach to Modeling and Simulation of Uncertain Dynamical Systems[J]. International Journal of Uncertainty, Fuzziness Knowledge - Bases System, 1997, 5 : 117 - 137.
  • 7O. Kaleva, A Note On Fuzzy DifferenfialEquafions[J]. Nonlinear Analysis ,2006,64:895-900.
  • 8Zhang Yue, Wang Guangyuan, Liu Sufang. Frequency domain methods for the solutions of N-order fuzzy differential equation[J]. Fuzzy Sets and Systems, 1998;94(1):45-49.
  • 9Zhang Yue, Wang Guangyuan. Time domain methods for the solutions of N-order fuzzy differential equation[J]. Fuzzy Sets and Systems 1998;94(1):77-92.
  • 10Buckley J J, Feuring T. Fuzzy differential equation[J]. Fuzzy Sets and Systems, 2000;110(1):43-54.

共引文献13

同被引文献61

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部