期刊文献+

最小化相关性的二维主成分分析 被引量:5

Correlation Minimized Based 2-Dimensional Principal Component Analysis
原文传递
导出
摘要 指出在二维主成分分析中,特征向量的任意两个分量之间是相关的,并给出此相关性的数学表达,进一步提出最小化相关性的二维主成分分析.该方法改进二维主成分分析的目标函数,最大化特征向量间总体散度的同时,最小化特征向量各分量间的相关性.最后,在Yale标准人脸库上的实验结果表明,文中方法有较强的特征抽取能力,在识别性能上优于二维主成分分析及对角二维主成分分析. It is indicated that two components belonging to the feature vector are correlated and the corresponding mathematical expression (2DPCA) is presented. The correlation minimized based 2-dimensional principal component analysis is proposed. It maximizes the total scatter of the feature vectors meanwhile minimizes the correlations of arbitrary two components belonging to the feature vector. The experimental results on Yale face database indicate that the proposed method has powerful ability of feature extraction and higher face recognition rates than 2DPCA and DiaPCA.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第1期7-10,共4页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金重点项目(No.60632050) 国家自然科学基金项目(No.606472060 60473039) 国家863计划项目(No.2006AA01Z119)资助
关键词 二维主成分分析 相关性 最小化相关性 2-Dimensional Principal Component Analysis (2DPCA), Correlation, Correlation Minimized
  • 相关文献

参考文献15

  • 1Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12( 1 ) : 103 -108.
  • 2Jolliffe I T. Principal Component Analysis. New York, USA: Springer-Verlag, 1986.
  • 3Turk M A, Pentland A P. Face Recognition Using Eigenfaces // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Maui, USA, 1991:586-591.
  • 4Liu Ke, Cheng Yongqing, Yang Jingye. Algebraic'Feature Extraction for Image Recognition Based on an Optimal Discriminant Criterion. Pattern Recognition, 1993, 26(6) : 903 -911.
  • 5Yang Jian, Zhang D, Frangi A F, et al. Two-Dimensional PCA : A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1) : 131 -137.
  • 6Yang Jian, Yang Jingyu. From Image Vector to Matrix: A Straight- forward Image Projection Technique - IMPCA vs. PCA. Pattern Recognition, 2002, 35(9) : 1997 - 1999.
  • 7Wang Liwei, Wang Xiao, Zhang Xuerong, et al. The Equivalence of Two-Dimensional PCA to Line-Based PCA. Pattern Recognition Letter, 2005, 26 (1) : 57 -60.
  • 8Kong Hui, Wang Lei, Teoh E K, et al. Generalized 2D Principal Component Analysis for Face Representation and Recognition. Neural Networks, 2005, 18(5/6) : 585 -594.
  • 9Zhang Daoqiang, Zhou Zhihua. ( 2D ) 2 PCA : Two-Directional Two- Dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing, 2005, 69 ( 1/2/3 ) : 224 - 231.
  • 10Zuo Wangmeng, Zhang D, Wang Kuanquan. Bidirectional PCA with Assembled Matrix Distance Metric for Image Recognition. IEEE Trans on Systems Man and Cybernetics, 2006, 36(4) : 863 -872.

同被引文献42

  • 1林海明,张文霖.主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J].统计研究,2005,22(3):65-69. 被引量:505
  • 2何国辉,甘俊英.二维主元分析在人脸识别中的应用研究[J].计算机工程与设计,2006,27(24):4667-4669. 被引量:22
  • 3Hyvarinen A,Karhunen J,Oja E.独立成分分析.周宗潭,董国华,徐昕等译.北京:电子工业出版社,2007.
  • 4AAPO H,JUHA K,ERKKI O.独立成分分析[M].北京:电子工业出版社,2007:102-103.
  • 5SANJOYD.算法概论[M].北京:清华大学出版社,2008.
  • 6宗成庆.统计自然语言处理[M].北京:清华大学出版社,2011.
  • 7Han Ju, Bhanu B. Individual recognition using gait energy image [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 10(2): 316-322.
  • 8Guo Baofeng, Mark S N. Gait feature subset by mutual information [J]. IEEE Trans on Systens, Man, and Cybernetics-Part A: Systems and Humans, 2009, 39(1) 36-46.
  • 9Yang Jian, Zhang D, Frangi A F, et al. Two dimensional PCA: a new approach to appearance based face represention and recognition [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 10Zhang Daoping, Zhou Zhihua. Two-direction two-dimensional PCA for efficient face representation [J] Neurocomputing, 2005, 69(1/2/3): 224-23 I.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部