期刊文献+

基于信任度传播的体视算法 被引量:2

A Belief Propagation Algorithm for Stereo Matching
原文传递
导出
摘要 针对信任度传播算法计算量大及误匹配率高的问题,提出一种高效的计算稠密视差图的全局优化算法.首先,根据像素匹配代价的特点、视差不连续亮度变化的特征,定义具有适应性的数据约束和平滑约束,并对平滑约束进行分层调节后执行消息的传输.其次,讨论消息传输迭代过程中的冗余计算问题,通过检测消息的收敛性减少运行时间.最后,分析信任度传播算法中的误匹配问题,通过匹配的对称性检测遮挡,并提出重建数据项后,利用贪婪迭代法优化所得视差图,将图像中可靠像素的视差向不可靠像素扩散.实验结果表明,该算法能以较快的速度计算出更理想的视差图. Large-scale computing and high matching error rate are two disadvantages of the existing algorithms based on belief propagation. An efficient global optimal algorithm for dense disparity mapping is presented. Firstly, according to the feature of match cost and the disparity discontinuities accompanying intensity changes, the adapted data constraint and the smoothness constraint are defined, and the messages are passed after the smoothness constraint is adjusted in every level, Then, the redundancy in message passing iteration process is discussed, and the message convergence is checked to decrease the running time. Finally, match symmetry is used to detect occlusions according to the analysis of matching errors in belief propagation algorithm. After the data term is reconstructed, a greedy method is used to iteratively refine the disparity result to propagate disparity information from the stable pixels tO the unstable ones. The experimental results show the proposed algorithm computes a disparity map accurately with relative less time.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第1期84-90,共7页 Pattern Recognition and Artificial Intelligence
关键词 立体匹配 信任度传播(BP) 自适应平滑约束 消息传输 Stereo Matching, Belief Propagation (BP), Adapted Smoothness Constraint, Message Passing
  • 相关文献

参考文献13

  • 1Szeliski R, Zabih R, Scharstein D, et al. A Comparative Study of Energy Minimization Methods for Markov Random Fields//Proc of the European Conference on Computer Vision. Graz, Austria, 2006,Ⅰ : 16-29.
  • 2Szeliski R, Zabih R. An Experimental Comparison of Stereo Algorithm//Proc of the International Workshop on Vision Algorithms: Theory and Practice. London, UK, 1999: 1- 19.
  • 3Sun Jian, Shum H Y, Zheng Nanning. Stereo Matching Using Belief Propagation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800.
  • 4Weiss Y, Freeman W T. On the Optimality of Solutions of the Max- Product Belief Propagation Algorithm in Arbitrary Graphs. IEEE Trans on Information Theory, 2001, 47(2) : 736 -744.
  • 5Kolmogorov V, Rother C. Comparison of Energy Minimization Algorithms for Highly Connected Graphs// Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006, Ⅰ: 1 - 15.
  • 6Tappen M F, Freeman W T. Comparison of Graph Cuts with Belief Propagation for Stereo Using Identical MRF Parameters//Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, Ⅱ : 900- 906.
  • 7Felzenszwalb P F, Huttenlocher D P. Efficient Belief Propagation for Early Vision// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅰ: 261 -268.
  • 8Birchficld S, Tomasi C. Depth Discontinuities by Pixel-to-Pixel Stereo. International Journal of Computer Vision, 1999, 35 ( 3 ) : 269 - 293.
  • 9Willsky A S. Multi-Resolution Markov Models for Signal and Image Processing. Proc of the IEEE, 2002, 90(8) : 1396 - 1458.
  • 10Borgefors G. Distance Transformations in Digital Images. Computer Vision, Graphics and Image Processing, 1986, 34(3) : 344 -371.

同被引文献92

  • 1李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 2SONKA M,HLAVAC V,BOYLE R.图像处理、分析与机器视觉[M].3版.艾海舟,苏延超,等,译.北京:清华大学出版社,2011.
  • 3HAMMERSLEY J M, CLIFFORD P. Markov fields on finite graphs and lattices [ EB/OL ]. ( 1968 ). http://www, cite ulike, org/group/ 4300/article/2335717.
  • 4BESAY J E. Spatial interaction and the statistical analysis of lattice systems[ J ]. Journal of the Royal Statistical Society B, 1974,36 (2) :192-236.
  • 5STAN Z L. Markov random field modeling in image analysis[ M]. New York : Springer-Verlag, 2009.
  • 6CHEN Fan, TANAKA K, HORIGUCHI T. Image segmentation based on Bethe approximation for Gaussian mixture model[ J]. Interdiscipli- nary Information Sciences ,2005,11 ( 1 ) :17-29.
  • 7CHOI H, BARANIUK R G. Multiscale image segmentation using wavelet-domain hidden Markov models [ J ]. IEEE Trans on Image Processing,2001,10(9) :1309-1321.
  • 8LEVADA A L M, MASCARENHAS N D A, TANNUS A, et al. Spa- tially non-homogeneous potts model parameter estimation on higher-or-der neighborhood systems by maximum pseudo-likelihood [ C ]//Proc of the 23rd Annual ACM Symposium on Applied Computing. New York :ACM Press, 2008 : 1733-1737.
  • 9ROTH S, BLACK M. Fields of experts : a framework for learning image priors [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA : IEEE Computer Society,2005 : 860- 867.
  • 10WEISS Y, FREEMAN W T. What makes a good model of natural ima- ges? [ C ]//IEEE Conference on Computer Vision and Pattern Recog- nition. Washington DC : IEEE Computer Society ,2007 : 1-8.

引证文献2

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部