摘要
研究矩阵方程AX+B Y=Z的最小二乘反中心对称解,给出了AX+B Y=Z的反中心对称最小二乘解,导出了AX+B Y=Z有反中心对称解的充分必要条件。在AX+B Y=Z的反中心对称最小二乘解集合中求与给定矩阵最佳逼近的解,给出求解最佳逼近解的数值算法与数值例子。
The least-squares solutions of the matrix equation AX+BY=Z with respect to anti-centrosymmetric matrices A and B is considered.The general expression of the solution is given and some necessary and sufficient conditions are derived for the solvability of the matrix equation AX+BY=Z.The optimal approximation to given matrices from the least-squares solution set of AX+BY=Z is provided.The algorithm and numerical example for solving optimal approximation solution are included.
出处
《武汉理工大学学报》
CAS
CSCD
北大核心
2010年第3期162-166,共5页
Journal of Wuhan University of Technology
基金
国家重点973项目(2007CB206904)
关键词
反中心对称矩阵
反问题
最小二乘解
最佳逼近
anti-centrosymmetric matrices
inverse problem
least-squares solutions
optimal approximation