期刊文献+

深空背景弱小运动目标检测算法研究 被引量:3

Research on dim moving target detection algorithm in deep space
下载PDF
导出
摘要 在深入分析监测设备CCD图像特点的基础上,提出了一种深空背景弱小运动目标检测新方法。该算法使用"列高通滤波器"进行背景抑制;采用序列图像多帧累加增强目标与恒星的对比度,用交叉投影法确定星点区域,提取局部星图,利用局部星图匹配剔除恒星干扰;结合候选目标的特征,采用基于逻辑的最近邻关联方法完成目标检测。结果表明,该算法可满足深空背景弱小运动目标实时检测的要求。 After the image characteristic of the surveillance equipment is analyzed,a real-time dim moving target detection algorithm in deep space is brought forward.The algorithm utilizes row high pass filter to suppress background.The algorithm uses multi-frame addition to improve contrast between stars and targets firstly,it uses cross projection to confirm the star's position secondly,it uses the star-point matching to eliminate most disturbances of stars thirdly,data association based on logic principle and the characteristic of target are adopted to detect the target finally.Practical application approves that the system perfectly meets the requirements of the real-time dim moving target detection and recognition in deep space.
出处 《光学技术》 CAS CSCD 北大核心 2010年第2期209-212,共4页 Optical Technique
关键词 深空背景 背景抑制 星图匹配 目标检测 deep space background suppression star-map matching target detection
  • 相关文献

参考文献8

二级参考文献144

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献342

同被引文献34

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部