期刊文献+

小波包特征提取及方差相似度的人脸识别 被引量:2

Face recognition using wavelet packet feature extraction and variance similarity
原文传递
导出
摘要 小波包变换是小波变换的推广,可视为普通小波函数的线性组合,具有良好的时频局部性和正交性,随着分解层数的增加,小波包分解能够在所有的频率范围聚焦。利用图像小波包变换的系数矩阵,能够构造出不同的人脸特征向量。针对人脸识别过程中的图像匹配问题,采用计算人脸特征向量方差的方法,并通过方差与权值的对应关系,转换出用于相似度计算的权值。基于理论推导得到的权值具有很好的稳定性,由这些权值计算出的方差相似度也具有较强的适应性,能够减弱由图像噪声、变形等干扰带来的影响。实验表明,该方法识别率高、实时性好。 Wavelet packet transform,which is generalized by wavelet transform,can be considered as a linear combination of general wavelet functions and has good time-frequency local performance and orthogonality.With decomposition level increases,wavelet packet decomposition can focus on range of all frequency.Different facial feature vectors can be constructed by image coefficient matrixes of wavelet packet transform.The image match for face recognition is studied.Variances of feature vectors in relation to facial images are computed,and the weights used for computation of similarity are obtained by a certain transform between the variance and weight.The weights based on the theoretical derivation have good stability.And the variance similarity calculated by these weights has a strong adaptability,weakening the impact of interferences including the noise and deformation of images.The experiments show that the proposed method has the characteristics of high recognition rate and better real-time performance.
出处 《光学技术》 CAS CSCD 北大核心 2010年第2期217-224,共8页 Optical Technique
基金 国家教育部博士点基金(2006021600)资助课题
关键词 人脸识别 小波包变换 特征表示 方差相似度 face recognition wavelet packet transform feature representation variance similarity degree
  • 相关文献

参考文献4

二级参考文献30

  • 1R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of faces: a survey [A]. Proe. IEEE [C]. 1995, 83(5): 705-740.
  • 2P Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. fisherfaces:recognition using class specific linear projection [J]. IEEE Trans. on PAMI, 1997, 19(7): 711-720.
  • 3Diego A Socolinsky, Andrea Selinger, Joshua D Neuheisel. Face recognition with visible and thermal infrared imagery [J]. Computer Vision and Image Understanding, 2003, 91 : 72-114.
  • 4F Tsalakanidou, D Tzovaras, M G Strintzis. Use of depth and color eigenfaces for face recognition [J]. Pattern recognition letters, 2003, 24:1427-1435.
  • 5J Kittler, F Roll Eds. Proceedings of the First International Workshop on Multiple Classifier Systems [A]. Springer LNCS 1857 [C]. Itanly,2000.
  • 6F Roli, J Kittler Eds. Proceedings of the Third International Workshop on Multiple Classifier Systems [A]. Springer LNCS 2364 [C]. Italy,2002.
  • 7B Achermann, H Bunke. Combination of face classifiers for person identification [A]. Proceedings of the 13^th IAPR international conference on Pattern recognition [C]. 1996, 3: 416-420.
  • 8G L Marcialis, F Roli. Fusion of LDA and PCA for face verification [A]. Proceedings of the Workshop on Biometric Authentication [C].Springer LNCS 2359, 2002.
  • 9Lu X, Wang Y, A K Jain. Combining classifier for face recognition [A]. International Conference on Multimedia and Expo [C]. 2003, 3:16-19.
  • 10J Kittler, M Hater, R Ruin, J Matas. On combining classifiers [J]. IEEE Trans. on PAMI, 1998, 20(3): 226-239.

共引文献19

同被引文献18

  • 1徐从东,罗家融,肖炳甲.基于肤色信息马氏距离图的人脸检测[J].计算机工程,2007,33(12):196-198. 被引量:5
  • 2Yip A W, Sinha P. Contribution of color to face recognition. Perception, 2002, 31(8) :995-1003.
  • 3Pei S C, Cheng C M. A novel block truncation coding of color images by using quaternion-moment-preserving principle. In: Proceedings of IEEE International Symposium on Circuits and Systems, Atlanta, USA, 1996. 684-687.
  • 4Pei S C, Chang J H, Ding J J. Quaternion matrix singular value decomposition and its applications for color image processing. In: Proceedings of International Conference on Image Processing, Barcelona, Spain, 2003. 14-17.
  • 5Maesschalck R D, Rimbaud D J, Massart D L. The mahalanobis distance. Chemometrics and Intelligent Laboratory System, 2000, 50 (1 ) : 1-18.
  • 6Angelopoulou E. Understanding the color of human skin. In: Proceedings of Conference on Human Vision and Electronic Imaging VI, 2001. 243-251.
  • 7Kakumanu P, Makrogiannis S, Bourbakis N. A survey of skin-color modeling and detection methods. Pattern Recognition, 2007,40(3) :1106-1122.
  • 8Chaves-Conzalez J M, Vega-Rodriguez M A, G6mez-Pulido J A, et al. Detecting skin in face recognition systerns: A colour spaces study. Digital Signal Processing, 2010,20(3): 806-823.
  • 9Yip A W, Sinha P. Contribution of color to face recognition [J]. Perception, 2002, 31(8):995-1003.
  • 10Angelopoulou E. Understanding the color of human skin [C]// Proceedings of Conference on Human Vision and Electronic Imaging VI, 2001: 243-251.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部