期刊文献+

融合CDI和LBP的人脸特征提取与识别算法 被引量:19

Face recognition using fusion of cartesian differential invariant and LBP
原文传递
导出
摘要 针对光照、姿态和表情对人脸识别率造成严重影响的问题,提出了结合笛卡儿微分不变量(CDI,cartesian differential invariant)和LBP(local binary patterns)的人脸特征抽取与识别算法。首先,利用高斯微分算子抽取人脸图像的微分结构,组合这些微分结构得到一个不可约简的笛卡儿CDI集。其次,对CDI集中每个分量分别计算其LBP特征,并将所有分量的LBP特征连接起来以得到人脸图像的特征。最后,运用所抽取出的人脸局部描述特征和支持向量机(SVM)分类器完成人脸图像分类与识别。试验分析表明,基于CDI的LBP特征对人脸位置、姿态、光照和表情的变化具有较高的不变性。该算法在ORL和Yale人脸库中分别取得了98.5%和98.89%的识别率。 The performance of face recognition is seriously affected by illumination,pose,and expression.To solve this problem,a method for face features extraction and recognition is proposed based on the fusion of cartesian differential invariant(CDI) and LBP.Firstly,an irreducible Cartesian differential invariant set is obtained by combining the differential structure of the face images acquired by using Gauss differential operator.Secondly,by computing and linking all the LBP features of every item in the invariant set,the features of a face image are extracted.Finally,the classification and recognition facial image is completed by using (SVM) classifier and the extracted features.Experiments show that the LBP features based on Cartesian differential invariant has the merit of preferable invariant to face position,pose,illumination and expression variations.The method achieveds 98.5% recognition rate on ORL face database and 98.89% on Yale face database.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第1期112-115,共4页 Journal of Optoelectronics·Laser
基金 国家"863"计划资助项目(2006AA12A104)
关键词 微分不变量 LBP特征 人脸识别 支持向量机 cartesian differential invariant(CDI) local binary pattern(LBP) features face recognition (SVM)
  • 相关文献

参考文献17

  • 1Turk M, Pentland A. Eigenfaces for recognition[J]. Cognitive Neuron Science J. 1991,3(1) :71-86.
  • 2吴炜,杨晓敏,何小海,陈默.基于主向量分析重建的人脸识别算法研究[J].光电子.激光,2008,19(2):246-248. 被引量:10
  • 3Etenmad K,Chellappe R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America, 1997, 14(8) : 1724-1733.
  • 4Yang J,Zhang D,Frangi A F,et al. Two-dimensional PCA: a new approach to appearance based face representation and recognition[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2004,2,6 (1) :131-137.
  • 5Bartlett M S,Sejnowski T J. Independent Components of Face Images,A representation for Face Recognition[A]. Proceedings of the Fourth Annual Joint Symposium on Nerval Computation Pasadena [C]. 1997,17.
  • 6Roweis S,Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290(5500) ; 2323-2326.
  • 7黄鸿,李见为,冯海亮.基于有监督的核局部线性嵌入的人脸性别识别[J].光电子.激光,2009,20(2):248-251. 被引量:3
  • 8王国强,欧宗瑛,王海燕,苏铁明.基于判别邻域嵌入的人脸识别[J].光电子.激光,2008,19(5):700-703. 被引量:6
  • 9Luo J, Ma Y, Takikawa E, et al. Person-specific SIFT Features for Face Recognition[A]. IOASSP[C]. 2007. 593-596.
  • 10Ahonen T,Hadid A,Pietikainen M. Face recognition with local binary pattems[A]. Proc. of European Conference on Computer Vision, Springer[C]. 2004.469-481.

二级参考文献66

  • 1刘靖,周激流.基于Hermite特征和核函数判决分析的人脸识别[J].光电子.激光,2006,17(1):119-123. 被引量:4
  • 2李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 3尹洪涛,付平,孟升卫.基于自适应加权Fisherface算法的人脸识别[J].光电子.激光,2006,17(11):1405-1408. 被引量:14
  • 4张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 5Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 6Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
  • 7Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053.
  • 8Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591.
  • 9Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 10Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.

共引文献141

同被引文献178

引证文献19

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部