摘要
设G,H是阶至少为2的简单图。图G与H的强直积是指这样一个图G□×H,其顶点集合为V(G)×V(H),并且(x1,x2)(y1,y2)∈E(G□×H)当且仅当[x1y1∈E(G)且x2y2∈E(H)]或者[x1=y1且x2y2∈E(H)]或者[x2=y2且x1y1∈E(G)]。一个图G的使用了k种颜色的2-距离染色是指一个从V(G)到{1,2,…,k}的映射f,使得任意两个不同的距离最多是2的顶点染不同的颜色。对图G进行2-距离染色所需的最少的颜色数称为图G的2-距离色数,记为χ2(G)。文中将获得两个图的强直积的2-距离色数的可达到的上界和下界:Δ(G□×H)+1≤χ2(G□×H)≤χ2(G).χ2(H)。对一些特殊图,例如Pm□×Kn,Pm□×Wn,Pm□×Sn,Pm□×Fn,Pm□×Cn(n≡0(mod3)或者n=5),给出了它们的2-距离色数。
Let G,H be simple graphs of order at least 2.The strong product of graph G and H is the graph G□×H with vertex set V(G)×V(H),and(x1,x2)(y1,y2)∈E(G□×H) whenever [x1y1∈E(G) and x2y2∈E(H)] or [x1=y1 and x2y2∈E(H)] or [x2=y2 and x1y1∈E(G)].A 2-distance coloring using k colors of a graph G is a mapping f from V(G) to {1,2,…,k} such that two distinct vertices lying at a distance less than or equal to 2 must be assigned different colors.The minimum number of colors required for a 2-distance coloring of G is called the 2-distance chromatic number of G,and denoted by χ2(G).We obtain lower and upper bounds of the 2-distance chromatic number of strong product of graphs,which is Δ(G□×H)+1≤χ2(G□×H)≤χ2(G)·χ2(H),also shows that the bounds are tight.For some special families of graphs such as Pm□×Pn,Pm□×Kn,Pm□×Wn,Pm□×Sn,Pm□×Fn,Pm□×Cn(n≡0(mod 3) or n=5),their 2-distance chromatic number are obtained.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2010年第3期66-70,共5页
Journal of Shandong University(Natural Science)
基金
Supported by NNSFC(10771091)
关键词
图
图的强直积
2-距离染色
2-距离色数
graphs
strong product of graphs
2-distance coloring
2-distance chromatic number