期刊文献+

图的强直积的2-距离染色(英文) 被引量:4

2-distance coloring of strong product of graphs
原文传递
导出
摘要 设G,H是阶至少为2的简单图。图G与H的强直积是指这样一个图G□×H,其顶点集合为V(G)×V(H),并且(x1,x2)(y1,y2)∈E(G□×H)当且仅当[x1y1∈E(G)且x2y2∈E(H)]或者[x1=y1且x2y2∈E(H)]或者[x2=y2且x1y1∈E(G)]。一个图G的使用了k种颜色的2-距离染色是指一个从V(G)到{1,2,…,k}的映射f,使得任意两个不同的距离最多是2的顶点染不同的颜色。对图G进行2-距离染色所需的最少的颜色数称为图G的2-距离色数,记为χ2(G)。文中将获得两个图的强直积的2-距离色数的可达到的上界和下界:Δ(G□×H)+1≤χ2(G□×H)≤χ2(G).χ2(H)。对一些特殊图,例如Pm□×Kn,Pm□×Wn,Pm□×Sn,Pm□×Fn,Pm□×Cn(n≡0(mod3)或者n=5),给出了它们的2-距离色数。 Let G,H be simple graphs of order at least 2.The strong product of graph G and H is the graph G□×H with vertex set V(G)×V(H),and(x1,x2)(y1,y2)∈E(G□×H) whenever [x1y1∈E(G) and x2y2∈E(H)] or [x1=y1 and x2y2∈E(H)] or [x2=y2 and x1y1∈E(G)].A 2-distance coloring using k colors of a graph G is a mapping f from V(G) to {1,2,…,k} such that two distinct vertices lying at a distance less than or equal to 2 must be assigned different colors.The minimum number of colors required for a 2-distance coloring of G is called the 2-distance chromatic number of G,and denoted by χ2(G).We obtain lower and upper bounds of the 2-distance chromatic number of strong product of graphs,which is Δ(G□×H)+1≤χ2(G□×H)≤χ2(G)·χ2(H),also shows that the bounds are tight.For some special families of graphs such as Pm□×Pn,Pm□×Kn,Pm□×Wn,Pm□×Sn,Pm□×Fn,Pm□×Cn(n≡0(mod 3) or n=5),their 2-distance chromatic number are obtained.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第3期66-70,共5页 Journal of Shandong University(Natural Science)
基金 Supported by NNSFC(10771091)
关键词 图的强直积 2-距离染色 2-距离色数 graphs strong product of graphs 2-distance coloring 2-distance chromatic number
  • 相关文献

参考文献11

  • 1BONDY J A, MURTY U S R. Graph theory[M]. London: Springer, 2008.
  • 2JENSEN T R, TOFT B. Graph coloring problems[M]. New York: Wiley, 1995.
  • 3ALON N, MOHAR B. The chromatic number of graph powers [J]. Combinatorics, Probability and Computing, 2002, 11 : 1-10.
  • 4AGNARSSON G, HALLDORSSON M M. Coloring powers of planar graphs [J]. SIAM J Discrete Mathmatics, 2003, 16 (4) :651-662.
  • 5BORODIN O V, BROERSMA H J, GLEBOV A, et al. Stars and bunches in planar graphs : Part Ⅰ. triangulations CDAM research report series [J].Original Russian Version. Diskretn Anal Lssled Oper Ser, 2001, 18 (2) :15-39.
  • 6BORODIN O V, BROERSMA H J, GLEBOV A, et al. Stars and bunches in planar graphs: Part Ⅱ: general planar graphs and coloring CDAM research report series[J]. Original Russian Version. Diskretn Anal Lssled Oper Ser 2001, 18(4) :9-33.
  • 7MOLLOY M, SALAVATIPOUR M R. A bound on the chromatic number of the square of a planar graph[ J]. Journal of Combinatorial Theory: Series B, 2005, 94(2) :189-213.
  • 8LIH K W, WANG W F. Coloring the square of an outerplanar graph[ J]. Taiwan Residents Journal of Mathematics, 2006, 10(4) : 1015-1023.
  • 9FERTIN G, GODARD E, RASPAUD Andre. Acyclic and k-distance coloring of the grid[ J]. Information Processing Letters, 2003, 87:51-58.
  • 10CHEN H Y, LIU X S, CHEN X E. The 2-distance chromatic number of cartesian product of graphs [ J ]. Journal of Northwest Normal University: Natural Science, 2007, 43 (2) : 12-15.

同被引文献22

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2ZHANG ZhongFu,CHENG Hui,YAO Bing,LI JingWen,CHEN XiangEn,XU BaoGen.On the adjacent-vertex-strongly-distinguishing total coloring of graphs[J].Science China Mathematics,2008,51(3):427-436. 被引量:79
  • 3张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 4陈祥恩.n-方体的点可区别全色数的渐近性态[J].西北师范大学学报(自然科学版),2005,41(5):1-3. 被引量:16
  • 5TEGUIA A M.Sierpiński Gasket Graphs and Some of Their Properties[J].Australas J Combin,2006,35:181-192.
  • 6JAKOVAC M,KLAVZAR S.Vertex-,Edge-,and Total-Colorings of Sierpiński-Like Graphs[J].Discrete Math,2009,309:1548-1556.
  • 7KLIX F,RAUTENSTRAUCH-GOEDE K.Struktur and Komponenten Analyse von Problem Lōsungsprozessen[J].Z Psychol,1967,174:167-193.
  • 8KLAVZAR S.Coloring Sierpiński Graphs and Sierpiński Gasket Graphs[J].Taiwan J Math,2008,12:513-522.
  • 9KLAVZAR S,MOHAR B.Crossing Numbers of Sierpiński-Like Graphs[J].J Graph Theory,2005,50:186-198.
  • 10FERTIN G,RASPAUD A,REED B.Star Coloring of Graphs[J].Journal of Graph Theory,2004,47(3):163-182.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部