期刊文献+

一种改进的半监督聚类入侵检测算法 被引量:1

An Improved Intrusion Detection Algorithm Based on Semi-supervised Clustering
下载PDF
导出
摘要 针对网络环境,提出了一种新的半监督聚类入侵检测算法,将主动学习策略应用于半监督聚类过程中,利用少量的标记数据,生成用于初始化算法的种子聚类,通过辅助聚类过程,根据网络数据的特点,检测已知和未知攻击。主动学习策略查询网络中未标记数据与标记数据的约束关系,对标记数据可以快速获得k个不相交的非空近邻集,经检测结果证明,改进了算法的性能,且表明了算法的可行性及有效性。 This paper proposes a novel for intrusion detection based on semi - supervised clustering and applies active learning strategy to semi - supervised clustering process. The algorithm uses a few limited labeled data to generate seed clusters initiating the algorithm and then aids clustering process. According to the characteristics of the net- work data, known and unknown attacks are detected. Active learning strategy searches the restriction relation between unlabeled data and labeled data in network, labeled data can rapidly attain k - disjointed - sets which are not null adjacent sets, and also improve performance of the algorithm. The experiment results manifest the feasibility and validity of the algorithm.
作者 胡翰 李永忠
出处 《计算机仿真》 CSCD 北大核心 2010年第3期140-142,150,共4页 Computer Simulation
基金 江苏省教育厅江苏科技大学资助课题(2005DX006J)
关键词 主动学习 半监督聚类 入侵检测 Active learning Semi -supervised clustering Intrusion detection
  • 相关文献

参考文献15

  • 1L Portnoy, E Eskin, S Stolfo. Intrusion detection with unlabeled data using clustering [ C]. Proceedings of ACM CSS Workshop on Data Mining Applied to Security, 2001.
  • 2S Basu, A Banerjee, R Mooney. Semi - supervised clustering by seeding[ C]. Proceedings of the 19th International Conference on Machine Learning, 2002. 19 - 26.
  • 3李庆中,苑春法,黄锦辉.基于小规模标注语料的机器学习方法研究[J].计算机应用,2004,24(2):56-58. 被引量:7
  • 4宋凌,李枚毅,李孝源.一种新的半监督入侵检测算法[J].计算机应用,2008,28(7):1781-1783. 被引量:7
  • 5N Abe, H Mamitsuka. Query learning strategies using boosting and bagging[ C]. In: Proceedings of the 15th International Conference on Machine Learning, ( ICML' 98), Madison, WI, 1998.1 - 9.
  • 6李永忠,孙彦,罗军生.WINEPI挖掘算法在入侵检测中的应用[J].计算机工程,2006,32(23):159-161. 被引量:11
  • 7Y Freund, Seung H, Shamir E, et al. Selective sampling using the query by committee algorithm [ J]. Machine Learning, 1997, 28 : 133 - 168.
  • 8D Lewis, W Gale. A sequential algorithm for training text classifiers[ C ]. Proceedings of the Seventeenth Annual International ACM - SIGIR Conference on Research and Development in Information Retrieval. Ireland, 1994.3 - 12.
  • 9D J Miller, H S Uyar. A mixture of experts classifier with learning based on both labeled and unlabelled data[ C]. In: M Mozer, M I Jordan, T Petsche, eds. Advances in Neural Information Process- ing Systems 9, Cambridge, MA: MIT Press, 1997, 571-57.
  • 10罗军生,李永忠,杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,18(1):178-180. 被引量:21

二级参考文献35

  • 1俞研,黄皓.一种半聚类的异常入侵检测算法[J].计算机应用,2006,26(7):1640-1642. 被引量:17
  • 2[1]Mark Lauer, How Much is Enough? Data Requirements for Statistical NLP[J/OL]. arXiv: cmp lg/9509001.
  • 3[2]Nigam K, McCallum AK, Thrun S, e al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39(2/3):103-134.
  • 4[3]Blum A, Mitchell T. Combining labeled and unlabeled data with co training[A]. Proceedings of the 11th COLT[C], 1998.92-100.
  • 5[4]Collins M, Singer Y. Unsupervised models for named entity classification[A]. Proceedings of the 1999 Joint SIGDAT Conference on Empirical methods in NLP and Very Large Corpora[C]. College Park, MD,1999.90-99.
  • 6[5]Freund Y, Schapire RE. Experiments with a new boosting algorithm[A]. machine Learning: Proceedings of the Thirteenth International Conference[C], 1996. 148-156.
  • 7[6]Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods[A]. Proceedings of the 33rd Annual meeting of the Association for Computational Linguistics[C]. 1995. 189-196.
  • 8[7]Abney, Steven, Bootstrapping[A]. Proceedings of 40th Annualmeeting of the Association for Computational Linguistics(ACL 2002)[C]. Philadelphia, 2002.
  • 9[8]Nigam K, Ghani R. Analyzing the effectiveness and applicability of co training[A]. Proc. Of Ninth International Conference on Information and Knowledge management(CIKM)[C], 2000b.
  • 10[9]Cohn D, Atlas L, Ladner R. Improving generalization with active learning[J].Machine Learning, 1994,15(2), 201-221.

共引文献51

同被引文献20

  • 1高小伟,蒋晓芸.BP神经网络在入侵检测系统中的应用及优化[J].山东大学学报(工学版),2006,36(6):107-110. 被引量:7
  • 2罗敏,阴晓光,张焕国,王丽娜.基于孤立点检测的入侵检测方法研究[J].计算机工程与应用,2007,43(13):146-149. 被引量:7
  • 3刘元勋,徐秋亮,云晓春.面向入侵检测系统的通用应用层协议识别技术研究[J].山东大学学报(工学版),2007,37(1):65-69. 被引量:5
  • 4BASU S, BANERJEE A, MOONEY R J. Semi-super- vised clustering by seeding[ C]//Proceedings of the 19th International Conference on Machine Learning. San Fran- cisco.. Morgan Kaufmann Publishers, 2002.. 27-34.
  • 5MUDA Z, YASSIN W, SULAIMAN M N. Intrusion de- tection based on k-means clustering and nal've bayes clas- sification[C]//Proceedings of the 7th International Con- ference on Information Technology in Asia. Kuching: IEEE CITA, 2011 : 1-6.
  • 6LIN Ying, ZHANG Yah, OU Yangjia. The design and implementation of host-based intrusion detection system [ C] // Proceedings of the Third International Symposium on Intelligent Information Technology and Security Infor- matics. Jinggangshan: IEEE IITSI, 2010 : 595-598.
  • 7JIA Chunfu, CHEN Deqiang. Performance evaluation of a collaborative intrusion detection system [C ]// Proceed- ings of the Fifth International Conference on Natural Corn-putation. Tianjin: IEEE ICNC, 2009: 409-413.
  • 8ABDULLAH A S, ULLAH Z. Data mining strategies and techniques for CRM systems [C ]// Proceedings of Inter- national Conference on System of Systems Engineering. Albuquerque : IEEE SoSE, 2009 : 1-5.
  • 9LEE W, STOLFO S. Data mining approaches for intru- sion detection[C ]//Proceedings of the 7th USENIX Se- curity Symposium. San Antonio: USENIX Association Berkeley, 1998 : 6-21.
  • 10MACQUEEN J. Some methods for classification and anal- ysis of multivariate observations[C ]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press, 1967 : 281-297.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部