期刊文献+

组合SVM和决策树精确建立CCP点 被引量:1

SVM&DT precisely establing Critical Control Point
下载PDF
导出
摘要 危害分析与关键控制点(HACCP)系统能有效保证食品质量安全,是食品行业安全生产流程的标准。在HACCP系统实施中,最关键的是精确定义系统的关键控制点(CCP):从HACCP系统的海量数据中选取有效数据来决策和定义CCP。本文组合支持向量机(SVM)和决策树(DT)来精确确定CCP。此方法基于SVM&DT在多类分类问题的精确简单特点和对多类划分的优越表现。应用此方法对杭州某水产养殖有限公司的历史数据进行验证和分析,发现CCP的自动挖掘精度大大提高,实现了虾苗验收、水产药物验收关键点控制问题。 Hazard Analysis and Critical Control Point(HACCP) system can effectively guarantee the quality of food safe and is the standard to the safety production process of food .In the implementation of HACCP system, the more is the precise definition of critical control point system(CCP) for HACCP.That is:Selecting useful data from the mass data of HACCP system to decide and definite ccps.In this paper, Support vector machine(SVM) and decision tree(DT) accurately determine CCPs.This method is based on SVM DT with a simple and precise classification of the characteristics and an excellent perfemance in Multi-Class division.Using this method to vivificate and analyze historical data of an aquaculture corporation.in Hangzhou, we find that the precision of CCPS ' s has been improved and realize the critical control point(CCP) in the process of acceptance check for shrimp of fisheries drug.
出处 《微计算机信息》 2010年第9期41-42,40,共3页 Control & Automation
基金 基金申请人:赵春江 项目名称:基于支持向量机的农产品安全生产危害分析研究 基金颁发部门:北京市自然科学基金委员会(4082012)
关键词 决策树 支持向量机 关键控制点 危害分析与关键点控制 decision tree Support Vector Machine CCP HACCP
  • 相关文献

参考文献9

  • 1食品企业危害分析关键控制点(HACCP)质量控制体系.赵同刚,徐科主编.经济管理出版社.
  • 2Ian H. Witten and Eibe Frank (2005) "Data Mining: Practical machine learning tools and techniques", 2rid Edition, Morgan Kaufmann, San Francisco, 2005.
  • 3数据挖掘中的新方法-支持向量机.邓乃扬,田英杰著.科学出版社.
  • 4数据挖掘概念与技术(原书第2版).Jiawei Han Mickeline Kamber著,范明,孟小峰译.机械工业出版社.
  • 5Validation studies on an online monitoring system for reducing faecal and microbial contamination on beef carcasses A. Tergney, D.J. Bohon *The National Food Centre, Ashtown, Dublin 15, Ireland.
  • 6T. Joachims, Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. Sch? lkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.
  • 7Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer- Verlag, 1995.
  • 8J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research,4:77 - 90, 1996. Source available from: http://www.rulequest.com/Personal/.
  • 9张磊,夏士雄,牛强.基于SVM二叉决策树方法的矿井提升机故障诊断[J].微计算机信息,2008,24(10):198-199. 被引量:4

二级参考文献4

共引文献3

同被引文献21

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部