期刊文献+

二叉树多类SVM在网络入侵检测中的应用

Application of Binary Tree Multi-Class SVM to Network Intrusion Detection
下载PDF
导出
摘要 本文在考察现有多类分类支持向量机(SVM)算法后,提出了一种基于二叉树结构的多分类器融合思想,融合过程充分考虑了类别之间的区分度,从而建立一颗相对优化的二叉树SVM的多类分类算法,并把改进后的多类SVM应用于入侵检测中以提高系统性能。在KDDCUP1999数据集上的实验结果表明了本方法的有效性。 Based on existing support vector machines(SVM) for multi-class classification, a novel multiple classifiers combination method based on binary tree structure is proposed.It considers discrimination degree between any two classes thus create a relatively optimized multi-class SVM algorithm with binary tree architecture.The improved method is applied to network intrusion detection.Experimental results carried out on KDD CUP 1999 data set indicate the effectiveness of the proposed method.
出处 《微计算机信息》 2010年第9期75-77,共3页 Control & Automation
基金 基金申请人:郭躬德 项目名称:多分类器融合技术及其应用研究 基金颁发部门:福建省自然科学基金委(2007J0016)
关键词 入侵检测 支持向量机 二叉树 多类分类 intrusion detection support vector machine binary tree multi-class classification
  • 相关文献

参考文献9

  • 1Vapnik V. Statistical Learning Theory [M]. New York: Springer Verlag, 1998.
  • 2Krebel U. Pairwise Classification and Support Vector Machines [M]. In: B Seholkopf, CJC Burges,AJ Smola eds. Advances in Kernel Methods: Support Vector Learning, The MIT Press, Cambridge, 1999, pp.255-268.
  • 3Bottou L, Cortes C, Dcnker, et al. Comparison of Classifier Methods: A Case Study in HandwTiting Digit Recognition [C]. In Proc. of International Conference on Pattern Recognition, IEEE Computer Society Press, 1994, pp.77-87.
  • 4Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Muhiclass Classification. In Advances in Neural Information Processing Systems[C], MIT Press, 2000; 12; pp.547-553.
  • 5Takahashi F, Abe S. Decision-Tree-Based Multiclass Support Vector Machines [C]. In Proc. of the 9th International Joint Conference on Networks. Singapore, 2002.(3) pp.1418- 1422.
  • 6万雅静,贺明.最大间隔分类器及其在入侵检测中的应用[J].微计算机信息,2007(18):227-229. 被引量:2
  • 7KDD Cup 1999 Data [EB/OL].1999-10.http://kdd.ics.uci.edu/ databases/kddcup99.html.
  • 8Witten I.H. and Frank E. Data Mining: PracticalMachine Learning Tools with Java Implementations [M], MorganKaufmann, San Francisco, 2000.
  • 9Fan R.E., Chen P.H., Lin C.J., Working Set Selection Using Order Information for Training Support Vector Machines [C], the Journal of Machine Learning Research, Volume 6, December 2005, pp.1889-1918.

二级参考文献4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部