期刊文献+

语义网格中的相似度算法研究

Study on Semantic Similarity Algorithms Based on Semantic Grid
下载PDF
导出
摘要 在网格中实现更加准确有效的服务发现、查询及其动态分配和替换,需要在语法匹配的基础上进一步实现语义匹配。语义匹配的关键在于语义相似度的计算。本文首先分析传统的相似度计算方法的特点以及存在的问题,提出一种新的改进算法。改进的算法考虑了深度影响因素,并引入多种语义关系且对这些关系分别赋予不同的权值,最后给信息量赋予了一种新的度量方法;文章最后给出相关实验结果,并比较了各算法的有效性。 For better achievement in service discovery and service replacement dynamically, we have to accomplish matching based on semantic.Semantic similarity measurement can be applied in many different fields and has variety of ways to measure it.After studying these measures, we find some existing problems and propose some measures.We explore a upgrading method by considering the depth effect and more semantic relations extensively.Further, we grant the different relations different weight.Finally, the paper presents the result of the proposed measure and other approaches.
出处 《微计算机信息》 2010年第9期112-114,共3页 Control & Automation
关键词 语义网格 语义相似度 语义距离 义原 Semantic grid semantic similarity semantic distance synset
  • 相关文献

参考文献11

  • 1什么是语义网格.2005-10-26.http://www.chinagrid.net/dvnews/show.aspx?id:1383&cid=23.
  • 2Princeton University Cognitive Science Lab[EB/OL].http://wordnet.princeton.edu.2006.
  • 3张囡囡,李冠宇,曲丽宁.主要本体学习工具的比较分析[J].微计算机信息,2008,24(12):189-190. 被引量:3
  • 4Graeme Hirst and David St-Onge. 1998. Lexical chains as representations of context for the detection and correction of malapropisms. In Fellbaum 1998,pp.305-332.
  • 5Claudia Leacock and Wordnet similarity for Martin Chodorow. 1998.Combining local context and semantic similarity for word sense identi-fication. In Fellbaum 1998, pp.265-283.
  • 6Philip Resnik. 1995.Proceedings of the Using information content to evaluate 14th International Joint Conference on semantic similarity. In Artificial Intelligence, pp.448-453,Montreal.
  • 7Jay J. Jiang and David W. Conrath. 1997. Semantic similarity based on corpus statistics and lexical taxonomy.In Proceedings of International Conference on Research in Computational Linguistics, Taiwan.
  • 8Patwardhan, S.2003.Incorporating dictionary and corpus information into a vector measure of semantic relatedness. Master Thesis, University of Minnesota, Duluth.
  • 9Banerjee S, T.Pedersen.2003. Extended gloss overlaps as a measure of semantic relatedness. In Proceedings of Proceedings of the 18th International Conference on Artificial Intelligence (UCAI-03).
  • 10Rubenstein, H., Goodenough, J.B., Contextual Correlates of Synonymy. Communications of the ACM 8, pp. 627 - 633, 1965.

二级参考文献6

  • 1孙茂圣.面向领域知识库的“五化”本体创建[J].微计算机信息,2006(12X):268-269. 被引量:6
  • 2[3]Navigli R,Velardi P,Gangemi A.Ontology learning and its application to automated terminology translation[J].IEEE Intelligent Systems,2003,18 (1):22-31.
  • 3[4]Modiea G,Gal A,Jamil H.The use of machine-generated ontologies in dynamic information seeking.In:Batini C,et al.eds.Proceeding of the 9th International Conference on Cooperative Information Systems (CoopIS 2001),Trento,2001.Berlin,Heidelberg:Springer-Verlag,2001.433-448.
  • 4[5]Maedche A,Staab S.Ontology Learning for the Semantic Web[J].IEEE Intelligent Systems,2001,16 (2) 72-79.
  • 5[6]Shamsfard M,Barforoush AA.Learing ontologies from natural language texts[J].Int'l Journal Human Computer Studies,2004,60 (1):17-63.
  • 6[7]Perez AG,Macho DM.A survey of ontology learning methods and techniques[R].Onto Web Deliverable D1.5,2003.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部