期刊文献+

用于荧光光谱识别的自适应训练及删剪算法

Adaptive training and pruning algorithm for recognizing the fluorescence spectrum
下载PDF
导出
摘要 提出利用基于自适应训练及删剪算法的网络模型对荧光光谱进行识别。首先采用基于递归最小方差的自适应学习算法对网络模型进行学习训练,由于该算法的学习步长能够自行调整,初始参数少,所以收敛速度很快;再利用删剪算法对学习后的网络结构进行删剪,优化网络的拓扑结构,降低网络的计算复杂度,提高网络的泛化能力;然后对优化后的网络进行再学习,使优化后的网络具有最佳参数;最后利用优化后的网络对测试样本进行识别。仿真实验表明,与删剪前的网络结构相比,在降低了网络的计算复杂度的同时,删剪优化后的正确识别率依然是100%。 A neural network based on adaptive learning and pruning algorithm is proposed to recognizing the fluorescence spectrum.Firstly employed adaptive learning algorithm based on recursive least square to train the tapped delay neural network, because this algorithm's learning step can be auto-conditioning and the number of it's tunable parameters is few, the convergence rate is fast.Secondly the architecture of neural network which has been trained is optimized by utilizing pruning algorithm to reduce the computational complexity and enhance network's generalization.And then the optimized network is retrained so that it has the optimum parameters.At last the test samples are predicted by the ultimate network.The simulation and comparison show that this optimized neuron network can not only reduce the calculating complexity greatly, but also the correct recognition rate is up to 100%.
出处 《微计算机信息》 2010年第9期218-219,207,共3页 Control & Automation
基金 济宁医学院青年科学基金资助
关键词 荧光光谱 均方差 删剪算法 神经网络 the fluorescence spectrum mean square error pruning algorithm neural network
  • 相关文献

参考文献5

二级参考文献25

  • 1张勇,刘君华,吴浩扬,陈志平.基于遗传神经网络的电子鼻在大气环境气体模式识别中的应用[J].仪器仪表学报,2001,22(z2):225-226. 被引量:7
  • 2申金媛,韩应哲,常胜江,张延炘,罗琦,陈瑞良.非线性荧光光谱的神经网络分析及其应用[J].光学学报,2004,24(7):1000-1003. 被引量:15
  • 3李素梅,张延,常胜江,申金媛,李宜宾,王立.基于SVM实现人眼注视与否的探知[J].光电子.激光,2004,15(10):1229-1233. 被引量:10
  • 4F. Evangelisti, A. Baroncelli, P. Bonasoni et al.. Differential optical absorption spectrometer for measurement of tropospheric pollutants[J]. Appl. Opt., 1995, 34(15): 2737-2744.
  • 5N. Akozbek , M. Scalora , C. M. Bowden et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Opt. Commun. , 2001, 191(3) :353-362.
  • 6Simon Haykin. Neural Networks : A Comprehensive Foundation(second edition)[M]. Beijing, Tsinghua University Press, 2001.318-350.
  • 7Lindsay I. Smith. A Tutorial on Principal Components Analysis[R], 2002. 1-27.http: // kybele. psych. cornell, edu/~ edelman/Psych-465 Spring-2003/PCA-tutorial. pdf.
  • 8Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: an application to face detection[C]. In Proc. of CVPR '97, Purrto Rico, 1997. 1-8.
  • 9Bernd Heisele, Purdy Ho, Tomaso Poggio. Face Recognition with Support Vector Machines: Global versus component -based approach, http: //cbcl. mit. edu/projects/ebcl/publications/ps/iccv2001, pdf.
  • 10Corinna Cortes, Vladimir Vapnik. Support vector networks,machine learning[J]. 1995, 20(3) : 273-297.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部