摘要
为方便决策,双目标优化问题就是要从最优解集中求出一组分布均匀且数量多的Pareto最优解。针对这一特点,定义了种群的均匀度和序值,来度量种群中解的分布和质量,将双目标优化问题转化为以均匀度为目标函数,序值为约束条件的单目标优化问题;设计了双目标优化问题粒子的电荷和受力的计算公式,提出了一种新的类电磁算法求解问题。用标准的Benchmark函数进行了仿真实验,结果表明,新算法对双目标优化问题的求解是非常有效的。
In order to facility the decision-making,bi-objective optimization is to find a sufficient number of uniformly distributed Pareto optimal solutions from the set of the optimal solutions.The uniformity degree and rank of the population are given to measure the distribution and quality of the solutions in the population based on the characteristic.Using the uniform degree of the population as objective function and the rank as the constrained condition,the bi-objective optimization problem is transformed into a single objective constrained optimization problem.The computational equations of the charge and force exerted on the particles are presented.Then,a novel electromagnetism-like algorithm is proposed for solving the new model.The simulation results on standard benchmark functions demonstrate the effectiveness of the proposed algorithm.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2010年第3期620-623,共4页
Systems Engineering and Electronics
基金
国家自然科学基金(60374063)资助课题
关键词
双目标优化
类电磁算法
PARETO最优解
电荷
bi-objective optimization
electromagnetism-like method
Pareto optimal solution
charge