期刊文献+

MKdV方程的新精确孤立波解 被引量:2

New exact solitary wave solutions of MKdV equation
下载PDF
导出
摘要 本文从MKdV方程的平凡解U0=1和U0=-1出发,考虑该方程的精确孤立波解.通过求相应Lax对的解以及对参数μ选取不同数值的方式,得到了MKdV方程的六组新孤立波解.用同一种方法求出12个精确解. In the paper, the exact solitary wave solutions of the MKdV equation are considered, which begins with its trivial solutions U0 = 1 and U0 = - 1. By solving the solution for Lax pair on trivial solutions and choosing different values of the parameter μ, six groups of new solitary wave solutions are obtained. It is scare in similar documents and papers that twelve solitary wave solutions are solved by using the same method.
出处 《河南城建学院学报》 CAS 2010年第1期69-72,共4页 Journal of Henan University of Urban Construction
关键词 MKDV方程 LAX对 精确解 孤立波解 MKdV equation Lax pair exact solution solitary wave solutions
  • 相关文献

参考文献8

  • 1Wadati M. The modified Korteweg-de Vries equation[J] .J. Phys. Soc. Japan, 1972(32):1651.
  • 2黄英,戴正德.Exact solitary wave solutions for a cubic 2D Ginzburg- Iandau equation[J]. Far East Journal Dynamical Systems, 2009( 11 ) : 95 - 105.
  • 3戴正德,黄英,孙星,等.Exact singular and non - singular solitary - wave solutions for Kadomtsev - Petviashvili eqution with p - power of nonlinearity [ J ]. Chaos, Soliton and Fractals, 2009 (40) : 946 - 951.
  • 4Ablowitz M.J., P.A. Clarkson. Solitons, Nonlinear Evolutions and Inverse Scattering[ M]. Cambridge University Press 1991.
  • 5李向正,刘玉晓.F展开法综述和两个广义KdV方程的孤立波解[J].平顶山工学院学报,2006,15(4):42-45. 被引量:4
  • 6李向正,李修勇.F展开法的发展和两个广义KdV方程的孤立波解[J].河南科技大学学报(自然科学版),2006,27(5):90-92. 被引量:8
  • 7Yang Zhi -yan, Jiang Tao. Application of Bifurcation method for gengralized MKdV equation [ J.]. Jouranl of Yuannan University, 2002,24( 1 ) : 16 - 20.
  • 8套格图桑,斯仁道尔吉.mKdV方程和mKP方程组的新的精确孤立波解[J].高校应用数学学报(A辑),2007,22(1):23-34. 被引量:7

二级参考文献52

  • 1李修勇,秦青,李保安,李向正.mKdV方程的精确解[J].河南科技大学学报(自然科学版),2004,25(4):86-89. 被引量:13
  • 2李向正,张金良,王跃明,王明亮.非线性Schrdinger方程的包络形式解[J].物理学报,2004,53(12):4045-4051. 被引量:29
  • 3李志斌,张善卿.非线性波方程准确孤立波解的符号计算[J].数学物理学报(A辑),1997,17(1):81-89. 被引量:114
  • 4Fan Engui Extended tanh-function method and its applications to nonlinear equations[J].Phys.Lett.A,2000,277:212-218.
  • 5Yan Zhenya.New explicit traveling wave solutions for two new integrable coupled nonlinear evolution equations[J].Phys.Lett.A,2001,292:100-106.
  • 6Fu Zuntao,Liu Shikuo,Liu Shida,et al.New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J].Physics Letters A,2001,290:72-76.
  • 7Wang Dengshan,Zhang Hongqing.Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation[J].Chaos,Solitons and Fractals,2005,25:601-610.
  • 8Zhang Jiefang,Dai Chaoqing,Yang Qin,et al.Variable-coefficient F-expansion method and its application to nonlinear Schr?dinger equation[J].Optics Communications,2005,252:408-421.
  • 9B.Dey,Avinash Khare,C.Nagaraja Kumar.Stationary Solitons of the fifthorder KdV-type equations and their stabilization[J].Physics Letters A,1996,233:449-452.
  • 10V.I.Karpman.Stabilization of soliton instabilities by higher order dispersion:KdV-type equations[J].Physics Letters A,1996,210:77-84.

共引文献16

同被引文献23

  • 1套格图桑,斯仁道尔吉.mKdV方程和mKP方程组的新的精确孤立波解[J].高校应用数学学报(A辑),2007,22(1):23-34. 被引量:7
  • 2李志斌.非线性数学物理方程的行波解[M].北京:科技出版社.2006.
  • 3M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear E- volution Equations and Inverse Scattering, Cambridge U- niversity press 1991.
  • 4Jian - qin Mei, Hong - qing Zhang. New soliton - like and periodic - like solutions for the KdV equation Ap- plied Mathematics and Computation, 169 ( 2005 ) 589 - 599.
  • 5R. Sabry, M.A. Zabran, Engui Fan. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficient KdV equation. Physics Letters A, 326(2004):93 - 101.
  • 6MingLiang Wang, Yueming Wang, Yubin Zhou. An auto Backlund transformation and exact solutions to a general- ized KdV equation with variable coefficients and their ap- plications. Physics Letters A, 303 ( 2002 ) 45 - 51.
  • 7黄英,马瑶,李保荣.Skillapplicationofthetheory:new solitary wave solutions and periodic solutions of the modified KdV equation, International journal of Func-tional Analysis, Operator Theory and Applications (2011) ,3(1).
  • 8黄英. New no - traveling wave solutions for the Liouville equation by B? cklund transformation method, Nonlinear Dyn, (2013) 72(1 -2).
  • 9ABLOWITZ M J,CLARKSON P A.Solitons,Nonlinear Evolutions and Inverse Scattering[M].Cambridge:Cambridge University Press,1991.
  • 10HUANG Y,MA Y,LI B R.Skill application of the theory:new solitary wave solutions and periodic solutions of the modified Kd V equation[J].International journal of Functional Analysis,Operator Theory and Applications,2011(01).

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部