期刊文献+

Banach空间奇异(n-1,1)共轭边值问题

Singular(n-1,n) Conjugate Boundary Value Problems in Banach Spaces
下载PDF
导出
摘要 通过构造一个特殊的锥,利用锥拉压不动点定理,获得了Banach空间奇异(n-1,1)共轭边值问题的正解. By constructing a particular cone and applying the fixed-point theorem of the cone expansion-compression, the existence of two positive solutions of the singular ( n - 1,1 ) conjugate boundary value problems in Banach spaces is investigated.
出处 《应用泛函分析学报》 CSCD 2010年第1期79-82,共4页 Acta Analysis Functionalis Applicata
关键词 BANACH空间 奇异 正解 Banaeh space singular cone positive solutions
  • 相关文献

参考文献5

  • 1ZHANG Mingchuan, WEI Zhongli. Singular ( n - 1,1 ) conjugate boundary value problems[ J ]. Ann of Diff Eqs, 2003, 19:112-117.
  • 2Eloe P W, Henderson J. Positive solution for ( n - 1,1 ) conjugate boundary value problems[ J]. Nonlinear Anal, 1997, 28: 1669-1680.
  • 3GUO Dajun, Lakshmikantham V, LIU Xinzhi. Nonlinear Integral Equations in Abstract Spaces[ M]. Kluwer Academic Publishers, 1987.
  • 4陈燕来,秦宝侠.Banach空间中奇异积分-微分方程边值问题多解的存在性[J].系统科学与数学,2005,25(5):550-561. 被引量:2
  • 5郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2003.

二级参考文献7

  • 1Agarwal R P and O'regan D. Second-order boundary value problems of singular type. J. Math.Anal, 1998, 226: 414-430.
  • 2Agarwal R P and O'regan D. Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Diff. Eqns, 1998, 143: 60-95.
  • 3Lan K and Webb J L. Positive solutions of semilinear differential equations with singularities. J.Diff. Eqns, 1998, 148: 407-421.
  • 4Liu Yansheng. Positive solutions of second order singular initial value problem in Banach space.Indian J. Pure Appl. Math, 2002, 33(6): 833-845.
  • 5Guo Dajun, V.Lakshmikantham and Liu X Z. Nonlinear Integral Equation in Abstract Spaces.Kluwer Academic Publisher, Dordrecht, 1996.
  • 6Guo Dajun, V.Lakshmikantham. Nonlinear Problems in Abstract Cones. Academic Press, Boston,MA.1988.
  • 7庞常词,韦忠礼.四阶奇异边值问题两个正解的存在性[J].数学学报(中文版),2003,46(2):403-410. 被引量:36

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部