期刊文献+

纳米悬浮液热虹吸管的传热性能试验研究 被引量:6

Experimental Study of the Heat Transfer Performance of a Nano-suspension-based Thermosyphon Pipe
下载PDF
导出
摘要 在相同的试验条件下,对比研究了纳米CuO-去离子水(DW)悬浮液重力热管与普通DW重力热管的启动性和等温性,研究了纳米工质热管的充液率和颗粒浓度对热管工作特性的影响,对纳米工质热管的强化传热机理进行了初步探讨。研究表明:纳米工质热管比普通热管启动快;纳米工质热管蒸发段外壁温的高低与充液率、纳米浓度和加热条件有关;纳米颗粒浓度和充液率对热管的传热性能影响较大,且存在最佳浓度(本研究为5%)和最佳充液率(本研究为44.3%);高浓度纳米工质热管比普通DW重力热管易于达到传热极限;试验中纳米悬浮液重力热管的传热强化率为16.19%~146.27%。 Under the same test conditions, contrasted and studied were the startup and isothermal characteristics of a gravity heat pipe filled with nano-CuO-deioned water (DW) suspension and a common DW gravity heat pipe. Moreover, the influence of the liquid-filling rate and the particle concentration of the nano-working medium heat pipe on its working characteristics was studied with a preliminary exploration of the mechanism governing the intensified heat transfer of the heat pipe. It has been found that the nano-working medium heat pipe can start up quicker than a common heat pipe. The exterior wall surface temperature of the evaporative section of the nano-working medium heat pipe depends on its liquid filling rate, nano-working medium concentration and heating conditions. The nano-particle concentration and the liquid filling rate exercise a relatively big influence on the heat transfer performance of the heat pipe and there exist an optimum concentration (5%) and an optimum liquid filling rate (44.3%). It is easier for the high concentration nano-working medium heat pipe to reach its heat transfer limits than the common DW heat pipe. The intensified heat transfer rate of the nano-suspension gravity heat pipe is within a range from -16.19% to 146.27% for the present test.
作者 向军 李菊香
出处 《热能动力工程》 CAS CSCD 北大核心 2010年第2期190-195,共6页 Journal of Engineering for Thermal Energy and Power
基金 江苏省自然科学基金资助项目(BK2004214)
关键词 CuO纳米悬浮液 热虹吸管 强化传热 BROWNIAN运动 充液率 浓度 CuO nano-suspension, thermosyphon pipe, intensified heat transfer, nano working medium, Brownian motion
  • 相关文献

参考文献6

  • 1XUAN Y, LI Q. Heat transfer enhancement of nanofluids[ J ]. Heat Fluid Flow,2000,21:58 -64.
  • 2TSAI C Y, CHIEN H T. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance [ J]. Materials Letters,2004, 58(9) : 1461 - 1465.
  • 3黄素逸,李中洲,黄锟剑,叶翔.纳米材料在热管中的应用[J].华中科技大学学报(自然科学版),2006,34(5):105-107. 被引量:19
  • 4彭玉辉,黄素逸,黄锟剑.纳米颗粒强化热虹吸管传热特性的实验研究[J].热能动力工程,2005,20(2):138-141. 被引量:21
  • 5庄骏,张红.热管技术及工程应用[M].北京:化学工业出版社,2000.
  • 6GUPTE SUNIL K,ADVANI SURESH G. Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension [J]. Heat Mass Transfer,1995, 38(16) :2945 -2958.

二级参考文献9

  • 1CHOI U S. Enhancing thermal conductivity of fluid with nanoparticles[ A]. In SIGINER D A, WANG H P eds. Developments and Application of Non-Newtonian Flows[C]. New York: [s.n. ], 1995.99 - 105.
  • 2LEES,CHOI U S, LIS, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles [J] .J Heat Transfer, 1999, 121:280- 289.
  • 3WANG X, XU X, CHOI U S. Thermal conductivity of nanoparticle-fluid mixture [J]. J Thermophys Heat Transfer, 1999, 13:474-480.
  • 4黄素逸 魏保太.汽液两相流与沸腾传热[M].武汉:华中理工大学出版社,1989..
  • 5Touloukian Y S,Liley P F,Sanena S C.Thermophysical properties of matter[M].New York:Plenum,1970.
  • 6Wang X,Xu X,Choi U S.Thermal conductivity of nanoparticle-fluid mixture[J].Thermophys Heat Transfer,1999,13:474-480.
  • 7Lee S,Choi S U S,Li S,et al.Measuring thermal conductivity of fluids containing oxide nanoparticles[J].J of Heat Transfer,1999,121:280-289.
  • 8宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470. 被引量:83
  • 9李强,宣益民,姜军,徐济万.航天用传热强化工质导热系数和粘度的实验研究[J].宇航学报,2002,23(6):73-76. 被引量:20

共引文献31

同被引文献30

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部