期刊文献+

基于遗传优化SVM的通信信号的分类 被引量:3

Sorting of Communication Signals Based on Optimized SVM by GA
下载PDF
导出
摘要 为了充分利用遗传算法的全局寻优能力和SVM(支持向量机)的分类能力,文章设计了遗传优化SVM的分类算法。用遗传算法优化SVM中核函数的两个参数,再利用优化后的SVM进行分类。通过对方波和白噪声两种信号的分类仿真,证明了其优越性,同时也展现了遗传优化SVM在通信领域很好的应用前景。 In order to use GA's global searching optimized SVM by GA is proposed. It optimizes two capability and SVM's sorting capability, parameters of SVM, and classifies signals SVM. The reliability of the sorting algorithm is showm, and very good is found through simulation of sorting of noise and square-wave signals application prospect in an algorithm of with optimized communication
出处 《信息化研究》 2010年第3期49-51,57,共4页 INFORMATIZATION RESEARCH
关键词 遗传算法 支持向量机 优化 仿真 genetic algorithm support vector machine optimization simulation
  • 相关文献

参考文献6

二级参考文献40

  • 1Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 2Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 3Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 4Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 5Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 6Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 7Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 8Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 9Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.
  • 10Collobert R. SVMTorch: support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 2001, 1: 143-160.

共引文献250

同被引文献17

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部