期刊文献+

一个基于标量观测辨识Lorenz混沌系统参数的滑动模设计方法

A Slide Mode Design Method for Estimating Parameter From a Scalar Time Series for Lorenz Chaotic System
下载PDF
导出
摘要 提出一种利用Brunowsky规范形来设计合适的滑模解决基于标量观测辨识Lorenz混沌系统参数问题。把系统状态方程变为一般Brunowsky规范形,利用该规范形和估计参数的相对度设计合适的滑模观测器,该观测器能与主系统实现完全同步或部分变元同步,从而获得参数的自适应估计。 We suggest a slide mode design--based approach for chaos ~, synchronization and parameter estimation from a scalar time series for nonlinear dynamical systems. A prerequisite, We transform the master system into a general Brunowsky canonical form, where the scalar time series functions as the model output. Then we construct a slaver to syn- chronize partially with the master by using slide mode design method and prove that the slide mode can be reached, and keep the partial variables on this slide mode. Step by step, the designed observer variables synchronize with the corresponding master variables within finite times as desired.
出处 《计算技术与自动化》 2010年第1期29-31,共3页 Computing Technology and Automation
基金 湖北省教育厅科学技术研究项目(D200723001)
关键词 混沌系统同步 标量观测辨识参数 滑动模设计的方法 chaos synchronization parameter estimation from a scalar time series slide mode design method
  • 相关文献

参考文献13

  • 1PECORA L M, CARROLL T L. Synchronization in Chaotic Systems[J]. Phys. Rev. Iett. , 2990,64:821-824.
  • 2PYARAGAS K.. Synchronization by using a linear feedback variable64, pp..Phys[J], lett. A,1992,170:421-428.
  • 3SINGER J, WANG Y-Z. Synchronization of master and slave systems by feedback 170, pp.. Phys[J]. Rev. lett}, 1991,66 : 1123- 1132.
  • 4HUBERMAN B A, LUMER E. Application of adaptive control mechanism in parameter estimation, 1991 [J]. IEEE Trans. Circuits Syst. , 1990, 37 : 547-562.
  • 5JOHN J K, AMRITKAR R E. synchronization and adaptive control algorithm for parameter estimation, 1990. Phys[J]. Rev. E, 1994,149:4843-4856.
  • 6LI Shuang, XU Wei, LI Rui-hong, et al. A general method for ehaos synchronization and parameters estimation between different systems, 1994 [J]. Journal of Sound and Vibration. , 2007,302:777-788.
  • 7SARASOLA C, D 'ANJOU A, TORREALDEA F J, et al. Application of energy flow function in parameter estimation [J]. Int. J. Bifurcation Chaos Appl. Sci. Eng. , 2003,13 : 177-189.
  • 8SARASOLA C. Minmization of the energy flow in parameter estimation from a time series[J]. Int. J. Bifurcation Chaos Appl. Sci. Eng. , 2005,72:026-223.
  • 9MAYBHATE A, AMRITKAR R E. Use of synchronization and adaptive control in Dynamic algorithm for parameter estimation and its applications[J]. Phys. Rev. E,1999, 59:284 -293.
  • 10MAYBHATE A, AMRITKAR R E. Dynamic algorithm for parameter estimation and its applications[J]. Phys. Rev. E, 2000, 61:6461-6470.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部