期刊文献+

碳掺杂(9,0)型闭口硼氮纳米管场发射第一性原理研究 被引量:6

First-principles Study of Field Emission Properties for (9,0) BNNT Capped by C_(60) Semi-sphere and Doped with C Atom
下载PDF
导出
摘要 本文运用第一性原理研究了(9,0)型闭口硼氮纳米管及其两种C掺杂体系的场发射性能。对三种纳米管体系的态密度、局域态密度、赝能隙、最高占据分子轨道/最低未占据分子轨道能隙和Mulliken电荷的分析结果表明,C替代顶层六元环中硼与氮原子的场发射性能分别最优和最差。由此可见,C掺杂改善硼氮纳米管场发射性能的关键在于被置换原子的种类。 The field emission properties of (9,0) BNNT capped by C60 semi-sphere and doped with C atom were investigated by the first-principles.The analytical results of the density of state and the locale density of state,the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital,the pseudo gap as well as the Mulliken population indicate that the field emission properties of C-doped BNNT in which B or N is substituted by C respectively are the best and worst.Therefore,the enhancement of field emission properties of the doped BNNT above-mentioned depends mainly on the category of the substituted atoms.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2010年第1期115-119,共5页 Journal of Synthetic Crystals
基金 国家自然科学基金(No.50771082 60776822) 西北工业大学创业种子基金(No.Z200969)
关键词 C掺杂 硼氮纳米管 场发射 第一性原理 doped carbon atom boron nitrogen nanotube field emission first-principles
  • 相关文献

参考文献14

  • 1Iijima S.Helical Microtubules of Graphitic Carbon[J].Nature,1991,354:56-58.
  • 2Chopra N G,Luyken R J,Cherrey K,et al.Boron Nitride Nanotubes[J].Science,1995,269:966-967.
  • 3Golberg D,Band Y,Kurashima K,et al.Single-walled B-doped Carbon,B/N-doped Carbon and BN Nanotubes Synthesized from Single-walled Carbon Nanotubes through a Substitution Reaction[J].Chemical Physics Letters,1999,308(3):337-342.
  • 4Tang C C,Bando Y,Sato T,et al.A Novel Precursor for Synthesis of Pure Boron Nitride Nanotubes[J].Chemical Communications,2002,12:1290.
  • 5Li F,Xia Y Y,Zhao M W,et al.Theoretical Study of Hydrogen Atom Adsorbed on Carbon-doped BN Nanotubes[J].Physics Letters A,2006,357(4):369-373.
  • 6Terrones M,Romo-Herrera J M,Cruz-Silva E.Pure and Doped Boron Nitride Nanotubes[J].Materials Today,2007,10(5):30-38.
  • 7Guo C S,Fan W J,Chen Z H,et al.First-principles Study of Single-walled Armchair Cx(BN)y Nanotubes[J].Solid State Communications,2006,137(10):549-552.
  • 8孙为,黄文奇,卢贵武.La_3Ga_5SiO_(14)晶体电子结构及光学性质的第一性原理研究[J].人工晶体学报,2008,37(1):229-235. 被引量:6
  • 9汪雷,杨德仁.Si82笼状分子的第一性原理研究[J].人工晶体学报,2009,38(4):840-842. 被引量:1
  • 10Delley B.An all-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules[J].Journal of Chemical Physics,1990,92(1):508-517.

二级参考文献44

  • 1张勇,唐超群,戴君.Rb_2Te W_3O_(12)电子结构及光学性质的第一性原理研究[J].物理学报,2005,54(2):868-874. 被引量:11
  • 2赵朋,李晓,张仲.硅酸镓镧晶体的Raman光谱分析[J].光谱实验室,2005,22(6):1161-1163. 被引量:3
  • 3Kroto H W, Heath J R. C60:Buckminster Fullerene[ J]. Nature, 1985, 318 : 162-163.
  • 4Kumar V,Kawazoe Y. Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of Silicon[ J]. Phys. Rev. Lett. , 2001,87:045503-4.
  • 5Sun Q, Wang Q. Stabilization of Si60 Cage Structure[ J ]. Phys. Rev. Lett. ,2003,90:135503-4.
  • 6Wang L, Li D S. Fully Exohydrogenated Si60 Fullerene Cage[ J ]. Molecular Simulation,2006,32:663-665.
  • 7Li B X, Liu J H. Stability of Si70 Cage Structures[J]. Eur. Phys. J. D. ,2005,32:59-62.
  • 8Piqueras M C, C respo R. Electronic Structure and Bonding in Si70[J]. Journal of Molecular Structure (Theochem), 1995,330:177-180.
  • 9Chai Y, Guo T. Fullerenes with Metal Inside[J]. J. Phys. Chem. , 1991, ,95:7564-7568.
  • 10Delley B. From Molecules to Solids with the DMol^3 Approach[J]. J. Chem. Phys. ,2000,113:7756-7764.

共引文献14

同被引文献65

  • 1ZHOU Junzhe,WANG Chongyu.First-principles study of the effects of Si doping on geometric and electronic structure of closed carbon nanotube[J].Chinese Science Bulletin,2005,50(17):1823-1828. 被引量:5
  • 2周俊哲,王崇愚.掺硅对封闭碳纳米管尖端几何及电子结构影响的第一原理研究[J].科学通报,2005,50(24):2706-2712. 被引量:9
  • 3Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional Gas of Massless Dirac Fermions in Grapheme[J].Nature,2005,438(4):197-200.
  • 4Son Y,Cohen M L,Louie S G.Half-metallic Graphene Nanoribbons[J].Nature,2006,444(4):347-342.
  • 5Han M Y,Ozyilmaz B,Zhang Y,et al.Energy Band-gap Engineering of Graphene Nanoribbons[J].Phys.Rev.Lett.,2007,98(4):206805-206809.
  • 6Wang Z F,Li Q X,Zheng H,et al.Tuning the Electronic Structure of Graphene Nanoribbons through Chemical Edge Modification:A Theoretical Study[J].Phys.Rev.B,2007,75(4):113406-113410.
  • 7Ayako H,Kazu S,Alexandra G,et al.Direct Evidence for Atomic Defects in Graphene Layers[J].Nature,2004,430(4):870-873.
  • 8Oeiras R Y,Araujo-Moreira F M,da Silva E Z.Defect-mediated Half-metal Behavior in Zigzag Graphene Nanoribbons[J].Phys.Rev.B,2009,80(4):073405-073409.
  • 9Deretzis I,Fiori G,Iannaccone G,et al.Effects due to Backscattering and Pseudogap Features in Graphene Nanoribbons with Single Vacancies[J].Phys.Rev.B,2010,81 (5):085427-085432.
  • 10Zheng X H,Wang R N,Song L L,et al.Impurity Induced Spin Filtering in Graphene Nanoribbons[J].Appl.Phys.Lett.,2009,95(3):123109-123112.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部